Properties

Label 112.8.m
Level $112$
Weight $8$
Character orbit 112.m
Rep. character $\chi_{112}(29,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $168$
Sturm bound $128$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 112.m (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Sturm bound: \(128\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(112, [\chi])\).

Total New Old
Modular forms 228 168 60
Cusp forms 220 168 52
Eisenstein series 8 0 8

Trace form

\( 168 q + 182 q^{4} + 348 q^{6} - 13000 q^{10} - 1204 q^{11} + 54708 q^{12} - 8918 q^{14} + 54000 q^{15} - 286 q^{16} + 51030 q^{18} - 121168 q^{19} - 174412 q^{20} - 168394 q^{22} + 417448 q^{24} + 71916 q^{26}+ \cdots - 14118308 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(112, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{8}^{\mathrm{old}}(112, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(112, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 2}\)