Defining parameters
Level: | \( N \) | \(=\) | \( 111 = 3 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 111.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(25\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(111, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 14 | 6 | 8 |
Cusp forms | 10 | 6 | 4 |
Eisenstein series | 4 | 0 | 4 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(111, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
111.2.c.a | $2$ | $0.886$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(-2\) | \(0\) | \(0\) | \(q+i q^{2}-q^{3}+q^{4}+2 i q^{5}-i q^{6}+\cdots\) |
111.2.c.b | $4$ | $0.886$ | 4.0.27648.1 | None | \(0\) | \(4\) | \(0\) | \(-8\) | \(q+\beta _{1}q^{2}+q^{3}+(-1+\beta _{2})q^{4}-\beta _{3}q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(111, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(111, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 2}\)