Defining parameters
Level: | \( N \) | \(=\) | \( 11025 = 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 11025.di (of order \(21\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 49 \) |
Character field: | \(\Q(\zeta_{21})\) | ||
Sturm bound: | \(3360\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(11025, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 20448 | 5352 | 15096 |
Cusp forms | 19872 | 5280 | 14592 |
Eisenstein series | 576 | 72 | 504 |
Decomposition of \(S_{2}^{\mathrm{new}}(11025, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{2}^{\mathrm{old}}(11025, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(11025, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(147, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(245, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(735, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1225, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2205, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3675, [\chi])\)\(^{\oplus 2}\)