Properties

Label 11.33.b
Level $11$
Weight $33$
Character orbit 11.b
Rep. character $\chi_{11}(10,\cdot)$
Character field $\Q$
Dimension $31$
Newform subspaces $2$
Sturm bound $33$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 11 \)
Weight: \( k \) \(=\) \( 33 \)
Character orbit: \([\chi]\) \(=\) 11.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(33\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{33}(11, [\chi])\).

Total New Old
Modular forms 33 33 0
Cusp forms 31 31 0
Eisenstein series 2 2 0

Trace form

\( 31 q + 44170411 q^{3} - 70314668348 q^{4} + 204484372543 q^{5} + 23\!\cdots\!90 q^{9} + 99\!\cdots\!19 q^{11} + 17\!\cdots\!36 q^{12} - 93\!\cdots\!24 q^{14} - 34\!\cdots\!99 q^{15} + 10\!\cdots\!20 q^{16}+ \cdots + 31\!\cdots\!42 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{33}^{\mathrm{new}}(11, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
11.33.b.a 11.b 11.b $1$ $71.353$ \(\Q\) \(\Q(\sqrt{-11}) \) 11.33.b.a \(0\) \(-85968833\) \(-9728091649\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-85968833q^{3}+2^{32}q^{4}-9728091649q^{5}+\cdots\)
11.33.b.b 11.b 11.b $30$ $71.353$ None 11.33.b.b \(0\) \(130139244\) \(214212464192\) \(0\) $\mathrm{SU}(2)[C_{2}]$