Defining parameters
| Level: | \( N \) | \(=\) | \( 11 \) |
| Weight: | \( k \) | \(=\) | \( 13 \) |
| Character orbit: | \([\chi]\) | \(=\) | 11.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(13\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{13}(11, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 13 | 13 | 0 |
| Cusp forms | 11 | 11 | 0 |
| Eisenstein series | 2 | 2 | 0 |
Trace form
Decomposition of \(S_{13}^{\mathrm{new}}(11, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 11.13.b.a | $1$ | $10.054$ | \(\Q\) | \(\Q(\sqrt{-11}) \) | \(0\) | \(-1358\) | \(-25774\) | \(0\) | \(q-1358q^{3}+2^{12}q^{4}-25774q^{5}+\cdots\) |
| 11.13.b.b | $10$ | $10.054$ | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) | None | \(0\) | \(2436\) | \(26492\) | \(0\) | \(q+\beta _{1}q^{2}+(244+\beta _{3})q^{3}+(-2035+\cdots)q^{4}+\cdots\) |