Properties

Label 11.13.b
Level $11$
Weight $13$
Character orbit 11.b
Rep. character $\chi_{11}(10,\cdot)$
Character field $\Q$
Dimension $11$
Newform subspaces $2$
Sturm bound $13$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 11 \)
Weight: \( k \) \(=\) \( 13 \)
Character orbit: \([\chi]\) \(=\) 11.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(13\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{13}(11, [\chi])\).

Total New Old
Modular forms 13 13 0
Cusp forms 11 11 0
Eisenstein series 2 2 0

Trace form

\( 11 q + 1078 q^{3} - 16252 q^{4} + 718 q^{5} + 2069017 q^{9} + 55187 q^{11} - 14054012 q^{12} - 15139368 q^{14} + 44633276 q^{15} + 34751624 q^{16} - 230969972 q^{20} + 83533560 q^{22} + 194754598 q^{23}+ \cdots + 923150273881 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{13}^{\mathrm{new}}(11, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
11.13.b.a 11.b 11.b $1$ $10.054$ \(\Q\) \(\Q(\sqrt{-11}) \) 11.13.b.a \(0\) \(-1358\) \(-25774\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-1358q^{3}+2^{12}q^{4}-25774q^{5}+\cdots\)
11.13.b.b 11.b 11.b $10$ $10.054$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 11.13.b.b \(0\) \(2436\) \(26492\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(244+\beta _{3})q^{3}+(-2035+\cdots)q^{4}+\cdots\)