Defining parameters
| Level: | \( N \) | \(=\) | \( 1092 = 2^{2} \cdot 3 \cdot 7 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1092.bw (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(448\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1092, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 472 | 64 | 408 |
| Cusp forms | 424 | 64 | 360 |
| Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1092, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 1092.2.bw.a | $64$ | $8.720$ | None | \(0\) | \(0\) | \(0\) | \(4\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(1092, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1092, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(546, [\chi])\)\(^{\oplus 2}\)