Properties

Label 10816.2.a.e
Level $10816$
Weight $2$
Character orbit 10816.a
Self dual yes
Analytic conductor $86.366$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [10816,2,Mod(1,10816)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(10816, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("10816.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 10816 = 2^{6} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 10816.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-3,0,3,0,1,0,6,0,4,0,0,0,-9,0,5,0,6,0,-3,0,-6,0,4,0,-9,0, 4,0,0,0,-12,0,3,0,3,0,0,0,12,0,3,0,18,0,-7,0,-6,0,-15,0,2,0,12,0,-18,0, -2,0,12,0,6,0,0,0,4,0,18,0,11,0,6,0,-12,0,4,0,-6,0,9,0,10,0,15,0,-12,0, 6,0,0,0,0,0,18,0,0,0,24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(86.3661948262\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 3 q^{3} + 3 q^{5} + q^{7} + 6 q^{9} + 4 q^{11} - 9 q^{15} + 5 q^{17} + 6 q^{19} - 3 q^{21} - 6 q^{23} + 4 q^{25} - 9 q^{27} + 4 q^{29} - 12 q^{33} + 3 q^{35} + 3 q^{37} + 12 q^{41} + 3 q^{43} + 18 q^{45}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.