Properties

Label 1053.1.k
Level $1053$
Weight $1$
Character orbit 1053.k
Rep. character $\chi_{1053}(107,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $2$
Newform subspaces $1$
Sturm bound $126$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1053.k (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 117 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(126\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1053, [\chi])\).

Total New Old
Modular forms 26 6 20
Cusp forms 2 2 0
Eisenstein series 24 4 20

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q + 2 q^{4} - 2 q^{7} - q^{13} + 2 q^{16} + q^{19} - q^{25} - 2 q^{28} + q^{31} + q^{37} + q^{43} - 3 q^{49} - q^{52} + q^{61} + 2 q^{64} + q^{67} - 2 q^{73} + q^{76} + q^{79} - 2 q^{91} + q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1053, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1053.1.k.a 1053.k 117.k $2$ $0.526$ \(\Q(\sqrt{-3}) \) $D_{3}$ \(\Q(\sqrt{-3}) \) None 351.1.p.a \(0\) \(0\) \(0\) \(-2\) \(q+q^{4}+\zeta_{6}^{2}q^{7}+\zeta_{6}^{2}q^{13}+q^{16}+\cdots\)