Defining parameters
| Level: | \( N \) | \(=\) | \( 10427 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 10427.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(1738\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(10427))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 870 | 870 | 0 |
| Cusp forms | 869 | 869 | 0 |
| Eisenstein series | 1 | 1 | 0 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(10427\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(404\) | \(404\) | \(0\) | \(404\) | \(404\) | \(0\) | \(0\) | \(0\) | \(0\) | |||
| \(-\) | \(466\) | \(466\) | \(0\) | \(465\) | \(465\) | \(0\) | \(1\) | \(1\) | \(0\) | |||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(10427))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 10427 | |||||||
| 10427.2.a.a | $1$ | $83.260$ | \(\Q\) | None | \(-2\) | \(-1\) | \(0\) | \(-2\) | $-$ | \(q-2q^{2}-q^{3}+2q^{4}+2q^{6}-2q^{7}+\cdots\) | |
| 10427.2.a.b | $404$ | $83.260$ | None | \(-13\) | \(-49\) | \(-75\) | \(-88\) | $+$ | |||
| 10427.2.a.c | $464$ | $83.260$ | None | \(13\) | \(50\) | \(77\) | \(90\) | $-$ | |||