Defining parameters
| Level: | \( N \) | \(=\) | \( 104 = 2^{3} \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 104.x (of order \(12\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 104 \) |
| Character field: | \(\Q(\zeta_{12})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(42\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(104, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 120 | 120 | 0 |
| Cusp forms | 104 | 104 | 0 |
| Eisenstein series | 16 | 16 | 0 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(104, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 104.3.x.a | $104$ | $2.834$ | None | \(-4\) | \(0\) | \(0\) | \(-8\) | ||