Properties

Label 1024.1
Level 1024
Weight 1
Dimension 10
Nonzero newspaces 3
Newform subspaces 5
Sturm bound 65536
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1024 = 2^{10} \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 5 \)
Sturm bound: \(65536\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(1024))\).

Total New Old
Modular forms 865 250 615
Cusp forms 33 10 23
Eisenstein series 832 240 592

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 10 0 0 0

Trace form

\( 10 q + 4 q^{17} - 8 q^{33} - 2 q^{49} - 8 q^{65} + 6 q^{81} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(1024))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1024.1.c \(\chi_{1024}(1023, \cdot)\) 1024.1.c.a 2 1
1024.1.d \(\chi_{1024}(511, \cdot)\) 1024.1.d.a 2 1
1024.1.f \(\chi_{1024}(255, \cdot)\) 1024.1.f.a 2 2
1024.1.f.b 2
1024.1.f.c 2
1024.1.h \(\chi_{1024}(127, \cdot)\) None 0 4
1024.1.j \(\chi_{1024}(63, \cdot)\) None 0 8
1024.1.l \(\chi_{1024}(31, \cdot)\) None 0 16
1024.1.n \(\chi_{1024}(15, \cdot)\) None 0 32
1024.1.p \(\chi_{1024}(7, \cdot)\) None 0 64
1024.1.r \(\chi_{1024}(3, \cdot)\) None 0 128

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(1024))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(1024)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 11}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 7}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 5}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(128))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(256))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(512))\)\(^{\oplus 2}\)