Defining parameters
Level: | \( N \) | = | \( 1024 = 2^{10} \) |
Weight: | \( k \) | = | \( 1 \) |
Nonzero newspaces: | \( 3 \) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(65536\) | ||
Trace bound: | \(9\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(1024))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 865 | 250 | 615 |
Cusp forms | 33 | 10 | 23 |
Eisenstein series | 832 | 240 | 592 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 10 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(1024))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
1024.1.c | \(\chi_{1024}(1023, \cdot)\) | 1024.1.c.a | 2 | 1 |
1024.1.d | \(\chi_{1024}(511, \cdot)\) | 1024.1.d.a | 2 | 1 |
1024.1.f | \(\chi_{1024}(255, \cdot)\) | 1024.1.f.a | 2 | 2 |
1024.1.f.b | 2 | |||
1024.1.f.c | 2 | |||
1024.1.h | \(\chi_{1024}(127, \cdot)\) | None | 0 | 4 |
1024.1.j | \(\chi_{1024}(63, \cdot)\) | None | 0 | 8 |
1024.1.l | \(\chi_{1024}(31, \cdot)\) | None | 0 | 16 |
1024.1.n | \(\chi_{1024}(15, \cdot)\) | None | 0 | 32 |
1024.1.p | \(\chi_{1024}(7, \cdot)\) | None | 0 | 64 |
1024.1.r | \(\chi_{1024}(3, \cdot)\) | None | 0 | 128 |
Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(1024))\) into lower level spaces
\( S_{1}^{\mathrm{old}}(\Gamma_1(1024)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 11}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 7}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 5}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(128))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(256))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(512))\)\(^{\oplus 2}\)