Properties

Label 1024.2.a.d
Level $1024$
Weight $2$
Character orbit 1024.a
Self dual yes
Analytic conductor $8.177$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1024,2,Mod(1,1024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1024, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1024.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1024 = 2^{10} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1024.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,-6,0,0,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.17668116698\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 512)
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 \beta q^{5} - 3 q^{9} + \beta q^{13} + 8 q^{17} + 13 q^{25} - 7 \beta q^{29} + 5 \beta q^{37} + 8 q^{41} - 9 \beta q^{45} - 7 q^{49} - 5 \beta q^{53} - \beta q^{61} + 6 q^{65} + 6 q^{73} + 9 q^{81} + \cdots + 8 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{9} + 16 q^{17} + 26 q^{25} + 16 q^{41} - 14 q^{49} + 12 q^{65} + 12 q^{73} + 18 q^{81} - 20 q^{89} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 0 0 −4.24264 0 0 0 −3.00000 0
1.2 0 0 0 4.24264 0 0 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1024.2.a.d 2
3.b odd 2 1 9216.2.a.g 2
4.b odd 2 1 CM 1024.2.a.d 2
8.b even 2 1 inner 1024.2.a.d 2
8.d odd 2 1 inner 1024.2.a.d 2
12.b even 2 1 9216.2.a.g 2
16.e even 4 2 1024.2.b.d 2
16.f odd 4 2 1024.2.b.d 2
24.f even 2 1 9216.2.a.g 2
24.h odd 2 1 9216.2.a.g 2
32.g even 8 2 512.2.e.c 2
32.g even 8 2 512.2.e.f yes 2
32.h odd 8 2 512.2.e.c 2
32.h odd 8 2 512.2.e.f yes 2
96.o even 8 2 4608.2.k.b 2
96.o even 8 2 4608.2.k.w 2
96.p odd 8 2 4608.2.k.b 2
96.p odd 8 2 4608.2.k.w 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
512.2.e.c 2 32.g even 8 2
512.2.e.c 2 32.h odd 8 2
512.2.e.f yes 2 32.g even 8 2
512.2.e.f yes 2 32.h odd 8 2
1024.2.a.d 2 1.a even 1 1 trivial
1024.2.a.d 2 4.b odd 2 1 CM
1024.2.a.d 2 8.b even 2 1 inner
1024.2.a.d 2 8.d odd 2 1 inner
1024.2.b.d 2 16.e even 4 2
1024.2.b.d 2 16.f odd 4 2
4608.2.k.b 2 96.o even 8 2
4608.2.k.b 2 96.p odd 8 2
4608.2.k.w 2 96.o even 8 2
4608.2.k.w 2 96.p odd 8 2
9216.2.a.g 2 3.b odd 2 1
9216.2.a.g 2 12.b even 2 1
9216.2.a.g 2 24.f even 2 1
9216.2.a.g 2 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1024))\):

\( T_{3} \) Copy content Toggle raw display
\( T_{5}^{2} - 18 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 18 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 2 \) Copy content Toggle raw display
$17$ \( (T - 8)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 98 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 50 \) Copy content Toggle raw display
$41$ \( (T - 8)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 50 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 2 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T - 6)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T + 10)^{2} \) Copy content Toggle raw display
$97$ \( (T - 8)^{2} \) Copy content Toggle raw display
show more
show less