Properties

Label 1020.2.cq
Level $1020$
Weight $2$
Character orbit 1020.cq
Rep. character $\chi_{1020}(37,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $144$
Sturm bound $432$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1020 = 2^{2} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1020.cq (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 85 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(432\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1020, [\chi])\).

Total New Old
Modular forms 1824 144 1680
Cusp forms 1632 144 1488
Eisenstein series 192 0 192

Trace form

\( 144 q - 16 q^{25} + 32 q^{31} + 16 q^{33} + 32 q^{37} + 80 q^{41} - 64 q^{53} + 32 q^{55} - 32 q^{57} + 32 q^{59} - 32 q^{67} + 32 q^{71} + 64 q^{73} + 32 q^{75} + 96 q^{77} - 96 q^{79} + 80 q^{83} + 96 q^{85}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1020, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1020, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1020, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(255, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(510, [\chi])\)\(^{\oplus 2}\)