Properties

Label 100.3
Level 100
Weight 3
Dimension 302
Nonzero newspaces 6
Newform subspaces 14
Sturm bound 1800
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 14 \)
Sturm bound: \(1800\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(100))\).

Total New Old
Modular forms 670 344 326
Cusp forms 530 302 228
Eisenstein series 140 42 98

Trace form

\( 302 q - 6 q^{2} - 4 q^{3} - 2 q^{4} - 10 q^{5} + 14 q^{6} + 28 q^{7} + 6 q^{8} - 4 q^{9} - 16 q^{10} - 40 q^{11} - 90 q^{12} - 24 q^{13} - 122 q^{14} - 2 q^{15} - 114 q^{16} + 94 q^{17} - 54 q^{18} + 100 q^{19}+ \cdots - 114 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(100))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
100.3.b \(\chi_{100}(51, \cdot)\) 100.3.b.a 1 1
100.3.b.b 1
100.3.b.c 2
100.3.b.d 4
100.3.b.e 4
100.3.b.f 4
100.3.d \(\chi_{100}(99, \cdot)\) 100.3.d.a 8 1
100.3.d.b 8
100.3.f \(\chi_{100}(57, \cdot)\) 100.3.f.a 2 2
100.3.f.b 4
100.3.h \(\chi_{100}(19, \cdot)\) 100.3.h.a 8 4
100.3.h.b 104
100.3.j \(\chi_{100}(11, \cdot)\) 100.3.j.a 112 4
100.3.k \(\chi_{100}(13, \cdot)\) 100.3.k.a 40 8

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(100))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(100)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 2}\)