Defining parameters
| Level: | \( N \) | = | \( 100 = 2^{2} \cdot 5^{2} \) |
| Weight: | \( k \) | = | \( 3 \) |
| Nonzero newspaces: | \( 6 \) | ||
| Newform subspaces: | \( 14 \) | ||
| Sturm bound: | \(1800\) | ||
| Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(100))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 670 | 344 | 326 |
| Cusp forms | 530 | 302 | 228 |
| Eisenstein series | 140 | 42 | 98 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(100))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(100))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(100)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 9}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 2}\)