Properties

Label 10.13.c
Level $10$
Weight $13$
Character orbit 10.c
Rep. character $\chi_{10}(3,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $12$
Newform subspaces $2$
Sturm bound $19$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 13 \)
Character orbit: \([\chi]\) \(=\) 10.c (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 2 \)
Sturm bound: \(19\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{13}(10, [\chi])\).

Total New Old
Modular forms 40 12 28
Cusp forms 32 12 20
Eisenstein series 8 0 8

Trace form

\( 12 q - 640 q^{3} - 1800 q^{5} + 78848 q^{6} - 367440 q^{7} + 867840 q^{10} - 1765296 q^{11} - 1310720 q^{12} + 3460020 q^{13} - 15082480 q^{15} - 50331648 q^{16} + 61972740 q^{17} + 27822080 q^{18} - 54190080 q^{20}+ \cdots - 3288563527680 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{13}^{\mathrm{new}}(10, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
10.13.c.a 10.c 5.c $6$ $9.140$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 10.13.c.a \(-192\) \(-936\) \(-16260\) \(-45336\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-2^{5}-2^{5}\beta _{1})q^{2}+(-156+156\beta _{1}+\cdots)q^{3}+\cdots\)
10.13.c.b 10.c 5.c $6$ $9.140$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 10.13.c.b \(192\) \(296\) \(14460\) \(-322104\) $\mathrm{SU}(2)[C_{4}]$ \(q+(2^{5}+2^{5}\beta _{1})q^{2}+(7^{2}-7^{2}\beta _{1}+\beta _{2}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{13}^{\mathrm{old}}(10, [\chi])\) into lower level spaces

\( S_{13}^{\mathrm{old}}(10, [\chi]) \simeq \) \(S_{13}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 2}\)