Base field \(\Q(\sqrt{-2}) \)
Generator \(a\), with minimal polynomial \(x^2 + 2\); class number \(1\).
Level 34848.9
| Norm: | 34848 |
| Ideal: | \((-124 a + 64) = \left(a\right)^{5} \cdot \left(a - 1\right)^{2} \cdot \left(a - 3\right)^{2} \) |
| Label: | 34848.9 |
Modular form spaces
| Weight | 2 |
|---|---|
| Dimension of cuspidal subspace: | 306 |
| Dimension of new cuspidal subspace: | 11 |
Newforms
This space contains the following newforms of dimension 1.
| label | weight | sign | base change | CM |
|---|---|---|---|---|
| 34848.9-a | 2 | -1 | no | no |
| 34848.9-b | 2 | +1 | no | no |
| 34848.9-c | 2 | -1 | no | no |
| 34848.9-d | 2 | -1 | no | $-4$ |
| 34848.9-e | 2 | -1 | no | no |
| 34848.9-f | 2 | +1 | no | no |
| 34848.9-g | 2 | +1 | no | $-4$ |
| 34848.9-h | 2 | -1 | no | $-4$ |
| 34848.9-i | 2 | -1 | no | no |
| 34848.9-j | 2 | -1 | no | no |
| 34848.9-k | 2 | +1 | no | no |