Base field \(\Q(\sqrt{-2}) \)
Generator \(a\), with minimal polynomial \(x^2 + 2\); class number \(1\).
Level 34848.7
| Norm: | 34848 |
| Ideal: | \((-68 a - 160) = \left(a\right)^{5} \cdot \left(a - 1\right)^{2} \cdot \left(a + 3\right)^{2} \) |
| Label: | 34848.7 |
Modular form spaces
| Weight | 2 |
|---|---|
| Dimension of cuspidal subspace: | 241 |
| Dimension of new cuspidal subspace: | 3 |
Newforms
This space contains the following newforms of dimension 1.
| label | weight | sign | base change | CM |
|---|---|---|---|---|
| 34848.7-a | 2 | +1 | no | $-4$ |
| 34848.7-b | 2 | -1 | no | $-4$ |
| 34848.7-c | 2 | -1 | no | $-4$ |