Properties

Label 2.0.3.1-14700.2-i
Base field Q(3)\Q(\sqrt{-3})
Weight 22
Level norm 1470014700
Level (70a+70) \left(70 a + 70\right)
Dimension 11
CM no
Base change yes
Sign +1+1
Analytic rank 00

Related objects

Downloads

Learn more

Base field: Q(3)\Q(\sqrt{-3})

Generator aa, with minimal polynomial x2x+1x^2 - x + 1; class number 11.

Form

Weight: 2
Level: 14700.2 = (70a+70) \left(70 a + 70\right)
Level norm: 14700
Dimension: 1
CM: no
Base change: yes 210.2.a.b , 630.2.a.h
Newspace:2.0.3.1-14700.2 (dimension 9)
Sign of functional equation: +1+1
Analytic rank: 00

Associated elliptic curves

This Bianchi newform is associated to the isogeny class 2.0.3.1-14700.2-i of elliptic curves.

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 3 3.1 = (a+1) \left(a + 1\right) 1 -1
4 4 4.1 = (2) \left(2\right) 1 -1
7 7 7.1 = (a2) \left(-a - 2\right) 1 -1
7 7 7.2 = (a3) \left(a - 3\right) 1 -1
25 25 25.1 = (5) \left(5\right) 1 -1

Hecke eigenvalues

The Hecke eigenvalue field is Q\Q. The eigenvalue of the Hecke operator TpT_{\mathfrak{p}} is apa_{\mathfrak{p}}. The database contains 200 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues apa_{\mathfrak{p}} for primes p\mathfrak{p} which do not divide the level.

N(p)N(\mathfrak{p}) p\mathfrak{p} apa_{\mathfrak{p}}
13 13 13.1 = (a+3) \left(a + 3\right) 2 2
13 13 13.2 = (a4) \left(a - 4\right) 2 2
19 19 19.1 = (2a+5) \left(-2 a + 5\right) 8 8
19 19 19.2 = (2a+3) \left(2 a + 3\right) 8 8
31 31 31.1 = (a+5) \left(a + 5\right) 4 -4
31 31 31.2 = (a6) \left(a - 6\right) 4 -4
37 37 37.1 = (3a+7) \left(-3 a + 7\right) 10 -10
37 37 37.2 = (3a+4) \left(3 a + 4\right) 10 -10
43 43 43.1 = (a+6) \left(a + 6\right) 4 -4
43 43 43.2 = (a7) \left(a - 7\right) 4 -4
61 61 61.1 = (4a+9) \left(-4 a + 9\right) 10 -10
61 61 61.2 = (4a+5) \left(4 a + 5\right) 10 -10
67 67 67.1 = (2a+9) \left(-2 a + 9\right) 4 -4
67 67 67.2 = (2a+7) \left(2 a + 7\right) 4 -4
73 73 73.1 = (a+8) \left(a + 8\right) 10 -10
73 73 73.2 = (a9) \left(a - 9\right) 10 -10
79 79 79.1 = (3a+10) \left(-3 a + 10\right) 8 8
79 79 79.2 = (3a+7) \left(3 a + 7\right) 8 8
97 97 97.1 = (3a8) \left(-3 a - 8\right) 10 -10
97 97 97.2 = (3a11) \left(3 a - 11\right) 10 -10
Display number of eigenvalues