Properties

Label 2.0.2491.1-4.1-d
Base field \(\Q(\sqrt{-2491}) \)
Weight $2$
Level norm $4$
Level \( \left(2\right) \)
Dimension $1$
CM no
Base change no
Sign $-1$
Analytic rank odd

Related objects

Downloads

Learn more

Base field: \(\Q(\sqrt{-2491}) \)

Generator \(a\), with minimal polynomial \(x^2 - x + 623\); class number \(12\).

Form

Weight: 2
Level: 4.1 = \( \left(2\right) \)
Level norm: 4
Dimension: 1
CM: no
Base change: no, but is a twist of the base change of a form over \(\mathbb{Q}\)
Newspace:2.0.2491.1-4.1 (dimension 8)
Sign of functional equation: $-1$
Analytic rank: odd

Associated elliptic curves

This Bianchi newform is associated to the isogeny class 2.0.2491.1-4.1-d of elliptic curves.

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
\( 4 \) 4.1 = \( \left(2\right) \) \( 1 \)

Hecke eigenvalues

The Hecke eigenvalue field is $\Q$. The eigenvalue of the Hecke operator $T_{\mathfrak{p}}$ is $a_{\mathfrak{p}}$. The database contains 26 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues $a_{\mathfrak{p}}$ for primes $\mathfrak{p}$ which do not divide the level.

$N(\mathfrak{p})$ $\mathfrak{p}$ $a_{\mathfrak{p}}$
\( 5 \) 5.1 = \( \left(5, a + 1\right) \) \( 2 \)
\( 5 \) 5.2 = \( \left(5, a + 3\right) \) \( -2 \)
\( 7 \) 7.1 = \( \left(7, a\right) \) \( 2 \)
\( 7 \) 7.2 = \( \left(7, a + 6\right) \) \( 2 \)
\( 9 \) 9.1 = \( \left(3\right) \) \( 5 \)
\( 17 \) 17.1 = \( \left(17, a + 2\right) \) \( 3 \)
\( 17 \) 17.2 = \( \left(17, a + 14\right) \) \( 3 \)
\( 19 \) 19.1 = \( \left(19, a + 6\right) \) \( -1 \)
\( 19 \) 19.2 = \( \left(19, a + 12\right) \) \( 1 \)
\( 23 \) 23.1 = \( \left(23, a + 9\right) \) \( -9 \)
\( 23 \) 23.2 = \( \left(23, a + 13\right) \) \( 9 \)
\( 31 \) 31.1 = \( \left(31, a + 9\right) \) \( 0 \)
\( 31 \) 31.2 = \( \left(31, a + 21\right) \) \( 0 \)
\( 37 \) 37.1 = \( \left(37, a + 2\right) \) \( -7 \)
\( 37 \) 37.2 = \( \left(37, a + 34\right) \) \( -7 \)
\( 41 \) 41.1 = \( \left(41, a + 12\right) \) \( 0 \)
\( 41 \) 41.2 = \( \left(41, a + 28\right) \) \( 0 \)
\( 47 \) 47.1 = \( \left(47, a + 23\right) \) \( 12 \)
\( 53 \) 53.1 = \( \left(53, a + 26\right) \) \( -14 \)
\( 59 \) 59.1 = \( \left(59, a + 19\right) \) \( 0 \)
Display number of eigenvalues