Properties

Label 2.0.2199.1-4.2-a
Base field \(\Q(\sqrt{-2199}) \)
Weight $2$
Level norm $4$
Level \( \left(2\right) \)
Dimension $1$
CM no
Base change no
Sign $+1$
Analytic rank \(0\)

Related objects

Downloads

Learn more

Base field: \(\Q(\sqrt{-2199}) \)

Generator \(a\), with minimal polynomial \(x^2 - x + 550\); class number \(36\).

Form

Weight: 2
Level: 4.2 = \( \left(2\right) \)
Level norm: 4
Dimension: 1
CM: no
Base change: no, but is a twist of the base change of a form over \(\mathbb{Q}\)
Newspace:2.0.2199.1-4.2 (dimension 62)
Sign of functional equation: $+1$
Analytic rank: \(0\)

Associated elliptic curves

This Bianchi newform is associated to the isogeny class 2.0.2199.1-4.2-a of elliptic curves.

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
\( 2 \) 2.1 = \( \left(2, a\right) \) \( 1 \)
\( 2 \) 2.2 = \( \left(2, a + 1\right) \) \( -1 \)

Hecke eigenvalues

The Hecke eigenvalue field is $\Q$. The eigenvalue of the Hecke operator $T_{\mathfrak{p}}$ is $a_{\mathfrak{p}}$. The database contains 26 eigenvalues, of which 20 are currently shown below. We only show the eigenvalues $a_{\mathfrak{p}}$ for primes $\mathfrak{p}$ which do not divide the level.

$N(\mathfrak{p})$ $\mathfrak{p}$ $a_{\mathfrak{p}}$
\( 3 \) 3.1 = \( \left(3, a + 1\right) \) \( 1 \)
\( 5 \) 5.1 = \( \left(5, a\right) \) \( -2 \)
\( 5 \) 5.2 = \( \left(5, a + 4\right) \) \( 2 \)
\( 11 \) 11.1 = \( \left(11, a\right) \) \( 0 \)
\( 11 \) 11.2 = \( \left(11, a + 10\right) \) \( 0 \)
\( 19 \) 19.1 = \( \left(19, a + 4\right) \) \( -5 \)
\( 19 \) 19.2 = \( \left(19, a + 14\right) \) \( -5 \)
\( 23 \) 23.1 = \( \left(23, a + 1\right) \) \( -6 \)
\( 23 \) 23.2 = \( \left(23, a + 21\right) \) \( 6 \)
\( 29 \) 29.1 = \( \left(29, a + 5\right) \) \( -4 \)
\( 29 \) 29.2 = \( \left(29, a + 23\right) \) \( 4 \)
\( 31 \) 31.1 = \( \left(31, a + 11\right) \) \( -3 \)
\( 31 \) 31.2 = \( \left(31, a + 19\right) \) \( -3 \)
\( 37 \) 37.1 = \( \left(37, a + 6\right) \) \( -7 \)
\( 37 \) 37.2 = \( \left(37, a + 30\right) \) \( -7 \)
\( 49 \) 49.1 = \( \left(7\right) \) \( 10 \)
\( 61 \) 61.1 = \( \left(61, a + 13\right) \) \( -13 \)
\( 61 \) 61.2 = \( \left(61, a + 47\right) \) \( -13 \)
\( 71 \) 71.1 = \( \left(71, a + 29\right) \) \( 0 \)
\( 71 \) 71.2 = \( \left(71, a + 41\right) \) \( 0 \)
Display number of eigenvalues