L(s) = 1 | − 3-s + 5-s − 7-s + 9-s − 13-s − 15-s − 17-s − 19-s + 21-s − 23-s + 25-s − 27-s − 29-s − 31-s − 35-s − 37-s + 39-s + 41-s − 43-s + 45-s + 49-s + 51-s − 53-s + 57-s − 59-s + 61-s − 63-s + ⋯ |
L(s) = 1 | − 3-s + 5-s − 7-s + 9-s − 13-s − 15-s − 17-s − 19-s + 21-s − 23-s + 25-s − 27-s − 29-s − 31-s − 35-s − 37-s + 39-s + 41-s − 43-s + 45-s + 49-s + 51-s − 53-s + 57-s − 59-s + 61-s − 63-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4136 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4136 ^{s/2} \, \Gamma_{\R}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6184494867\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6184494867\) |
\(L(1)\) |
\(\approx\) |
\(0.6447518044\) |
\(L(1)\) |
\(\approx\) |
\(0.6447518044\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 \) |
| 47 | \( 1 \) |
good | 3 | \( 1 - T \) |
| 5 | \( 1 + T \) |
| 7 | \( 1 - T \) |
| 13 | \( 1 - T \) |
| 17 | \( 1 - T \) |
| 19 | \( 1 - T \) |
| 23 | \( 1 - T \) |
| 29 | \( 1 - T \) |
| 31 | \( 1 - T \) |
| 37 | \( 1 - T \) |
| 41 | \( 1 + T \) |
| 43 | \( 1 - T \) |
| 53 | \( 1 - T \) |
| 59 | \( 1 - T \) |
| 61 | \( 1 + T \) |
| 67 | \( 1 + T \) |
| 71 | \( 1 + T \) |
| 73 | \( 1 + T \) |
| 79 | \( 1 - T \) |
| 83 | \( 1 + T \) |
| 89 | \( 1 + T \) |
| 97 | \( 1 + T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.39006669778179866847983890872, −17.49540443194634878823756971248, −17.19451698916280937979377134257, −16.51846879670207946309304407038, −15.882988787416239486819441808686, −15.12722101427672905636894660331, −14.31139661039885060084868006101, −13.45929577945449238136515685002, −12.75653141664725640777140912727, −12.553808779304883983774681759222, −11.536591869531205823906759621811, −10.72516094958905559407485662734, −10.23133802297319960222727002917, −9.50225493011533538266973692531, −9.074505083658721668501831290714, −7.83305983324762585413984338305, −6.839693577417933288969847041554, −6.54014729044746880335148887793, −5.78017954516808491561043769352, −5.15361097367966947081598690584, −4.3320261316488419851686875782, −3.47477073449256949542734334529, −2.2336689886377190105451027780, −1.86927538173006512164899366897, −0.41650860202469570622957159176,
0.41650860202469570622957159176, 1.86927538173006512164899366897, 2.2336689886377190105451027780, 3.47477073449256949542734334529, 4.3320261316488419851686875782, 5.15361097367966947081598690584, 5.78017954516808491561043769352, 6.54014729044746880335148887793, 6.839693577417933288969847041554, 7.83305983324762585413984338305, 9.074505083658721668501831290714, 9.50225493011533538266973692531, 10.23133802297319960222727002917, 10.72516094958905559407485662734, 11.536591869531205823906759621811, 12.553808779304883983774681759222, 12.75653141664725640777140912727, 13.45929577945449238136515685002, 14.31139661039885060084868006101, 15.12722101427672905636894660331, 15.882988787416239486819441808686, 16.51846879670207946309304407038, 17.19451698916280937979377134257, 17.49540443194634878823756971248, 18.39006669778179866847983890872