Properties

Label 4-155952-1.1-c1e2-0-12
Degree $4$
Conductor $155952$
Sign $-1$
Analytic cond. $9.94363$
Root an. cond. $1.77576$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s + 9-s + 2·12-s + 4·16-s − 8·19-s − 25-s − 27-s + 8·31-s − 2·36-s − 4·48-s + 11·49-s + 8·57-s − 14·61-s − 8·64-s − 16·67-s + 10·73-s + 75-s + 16·76-s − 16·79-s + 81-s − 8·93-s + 2·100-s − 16·103-s + 2·108-s + 5·121-s − 16·124-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s + 1/3·9-s + 0.577·12-s + 16-s − 1.83·19-s − 1/5·25-s − 0.192·27-s + 1.43·31-s − 1/3·36-s − 0.577·48-s + 11/7·49-s + 1.05·57-s − 1.79·61-s − 64-s − 1.95·67-s + 1.17·73-s + 0.115·75-s + 1.83·76-s − 1.80·79-s + 1/9·81-s − 0.829·93-s + 1/5·100-s − 1.57·103-s + 0.192·108-s + 5/11·121-s − 1.43·124-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 155952 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 155952 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(155952\)    =    \(2^{4} \cdot 3^{3} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(9.94363\)
Root analytic conductor: \(1.77576\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 155952,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T^{2} \)
3$C_1$ \( 1 + T \)
19$C_2$ \( 1 + 8 T + p T^{2} \)
good5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
7$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
11$C_2^2$ \( 1 - 5 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
41$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 - 11 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 + 19 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 154 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 130 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 - 146 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.904576061097360707651138215797, −8.617901304990678264998953970757, −8.188857398276588140156519015573, −7.57719463711681801958954569696, −7.09629991703813270871692542563, −6.36183849961441221182971644441, −6.03921249310516027590630964803, −5.55085907842215091742630411051, −4.76799882206476029917443649366, −4.43575170842274105456443254671, −4.01381235853638191869941790465, −3.16673931725937276916292992997, −2.32579572587618680024091876188, −1.25013518041851019608853334306, 0, 1.25013518041851019608853334306, 2.32579572587618680024091876188, 3.16673931725937276916292992997, 4.01381235853638191869941790465, 4.43575170842274105456443254671, 4.76799882206476029917443649366, 5.55085907842215091742630411051, 6.03921249310516027590630964803, 6.36183849961441221182971644441, 7.09629991703813270871692542563, 7.57719463711681801958954569696, 8.188857398276588140156519015573, 8.617901304990678264998953970757, 8.904576061097360707651138215797

Graph of the $Z$-function along the critical line