Properties

Label 4-15125-1.1-c1e2-0-4
Degree $4$
Conductor $15125$
Sign $-1$
Analytic cond. $0.964383$
Root an. cond. $0.990974$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·4-s + 5-s − 4·9-s − 6·11-s + 5·16-s − 2·19-s − 3·20-s + 25-s − 12·29-s + 6·31-s + 12·36-s − 12·41-s + 18·44-s − 4·45-s + 6·49-s − 6·55-s + 6·59-s + 16·61-s − 3·64-s − 12·71-s + 6·76-s − 10·79-s + 5·80-s + 7·81-s − 2·95-s + 24·99-s − 3·100-s + ⋯
L(s)  = 1  − 3/2·4-s + 0.447·5-s − 4/3·9-s − 1.80·11-s + 5/4·16-s − 0.458·19-s − 0.670·20-s + 1/5·25-s − 2.22·29-s + 1.07·31-s + 2·36-s − 1.87·41-s + 2.71·44-s − 0.596·45-s + 6/7·49-s − 0.809·55-s + 0.781·59-s + 2.04·61-s − 3/8·64-s − 1.42·71-s + 0.688·76-s − 1.12·79-s + 0.559·80-s + 7/9·81-s − 0.205·95-s + 2.41·99-s − 0.299·100-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 15125 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15125 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(15125\)    =    \(5^{3} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(0.964383\)
Root analytic conductor: \(0.990974\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 15125,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_1$ \( 1 - T \)
11$C_2$ \( 1 + 6 T + p T^{2} \)
good2$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
3$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 18 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
19$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 2 T + p T^{2} ) \)
23$C_2^2$ \( 1 + 8 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
37$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 42 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 32 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$$\times$$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + p T^{2} ) \)
61$C_2$$\times$$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 - 6 T + p T^{2} ) \)
67$C_2^2$ \( 1 - 28 T^{2} + p^{2} T^{4} \)
71$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 12 T + p T^{2} ) \)
73$C_2^2$ \( 1 + 66 T^{2} + p^{2} T^{4} \)
79$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 10 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2^2$ \( 1 - 86 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.76901631957019374066241473658, −10.13605068220931389345708770409, −9.858589647788108281041476654884, −9.114317305715042420259307385768, −8.548925953485948244638238840664, −8.351830733471462569370341538818, −7.66787121601823913740640324076, −6.86292423042839496475885326716, −5.78938268791392875304163771661, −5.48080125027536949707953604299, −5.01827548961295327701762406430, −4.13903181362162610531995735363, −3.22585393988007919858454432865, −2.32936093136540293812935385391, 0, 2.32936093136540293812935385391, 3.22585393988007919858454432865, 4.13903181362162610531995735363, 5.01827548961295327701762406430, 5.48080125027536949707953604299, 5.78938268791392875304163771661, 6.86292423042839496475885326716, 7.66787121601823913740640324076, 8.351830733471462569370341538818, 8.548925953485948244638238840664, 9.114317305715042420259307385768, 9.858589647788108281041476654884, 10.13605068220931389345708770409, 10.76901631957019374066241473658

Graph of the $Z$-function along the critical line