Properties

Label 4-779e2-1.1-c1e2-0-1
Degree $4$
Conductor $606841$
Sign $-1$
Analytic cond. $38.6927$
Root an. cond. $2.49406$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·4-s + 6·5-s − 2·9-s + 12·16-s − 24·20-s + 17·25-s − 8·31-s + 8·36-s + 4·37-s − 6·41-s − 2·43-s − 12·45-s − 13·49-s − 12·59-s − 2·61-s − 32·64-s − 14·73-s + 72·80-s − 5·81-s + 24·83-s − 68·100-s + 28·103-s − 36·107-s + 12·113-s − 13·121-s + 32·124-s + 18·125-s + ⋯
L(s)  = 1  − 2·4-s + 2.68·5-s − 2/3·9-s + 3·16-s − 5.36·20-s + 17/5·25-s − 1.43·31-s + 4/3·36-s + 0.657·37-s − 0.937·41-s − 0.304·43-s − 1.78·45-s − 1.85·49-s − 1.56·59-s − 0.256·61-s − 4·64-s − 1.63·73-s + 8.04·80-s − 5/9·81-s + 2.63·83-s − 6.79·100-s + 2.75·103-s − 3.48·107-s + 1.12·113-s − 1.18·121-s + 2.87·124-s + 1.60·125-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 606841 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 606841 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(606841\)    =    \(19^{2} \cdot 41^{2}\)
Sign: $-1$
Analytic conductor: \(38.6927\)
Root analytic conductor: \(2.49406\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 606841,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad19$C_1$$\times$$C_1$ \( ( 1 - T )( 1 + T ) \)
41$C_2$ \( 1 + 6 T + p T^{2} \)
good2$C_2$ \( ( 1 + p T^{2} )^{2} \)
3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
5$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
17$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
59$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
71$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
73$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
83$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.296499449630110216369102611507, −7.923460562946246199886108427469, −7.39532327685859741640586695460, −6.39084306102520193435942181609, −6.30092624798927176107946148012, −5.75116326140982635046813181964, −5.38402383492515633625005346052, −5.03912355415234199771433602492, −4.66113670445354521481725901186, −3.85615252208514256878324668324, −3.28403235558794973310569727230, −2.67183638730115156824697116428, −1.79554652871898727064930174155, −1.35486074388197716928380982194, 0, 1.35486074388197716928380982194, 1.79554652871898727064930174155, 2.67183638730115156824697116428, 3.28403235558794973310569727230, 3.85615252208514256878324668324, 4.66113670445354521481725901186, 5.03912355415234199771433602492, 5.38402383492515633625005346052, 5.75116326140982635046813181964, 6.30092624798927176107946148012, 6.39084306102520193435942181609, 7.39532327685859741640586695460, 7.923460562946246199886108427469, 8.296499449630110216369102611507

Graph of the $Z$-function along the critical line