Properties

Label 4-840e2-1.1-c1e2-0-87
Degree $4$
Conductor $705600$
Sign $1$
Analytic cond. $44.9896$
Root an. cond. $2.58987$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·3-s + 2·4-s − 4·5-s − 4·6-s + 3·9-s + 8·10-s + 4·12-s − 12·13-s − 8·15-s − 4·16-s − 6·18-s − 8·20-s + 11·25-s + 24·26-s + 4·27-s + 16·30-s − 16·31-s + 8·32-s + 6·36-s − 4·37-s − 24·39-s − 16·41-s − 12·43-s − 12·45-s − 8·48-s − 49-s + ⋯
L(s)  = 1  − 1.41·2-s + 1.15·3-s + 4-s − 1.78·5-s − 1.63·6-s + 9-s + 2.52·10-s + 1.15·12-s − 3.32·13-s − 2.06·15-s − 16-s − 1.41·18-s − 1.78·20-s + 11/5·25-s + 4.70·26-s + 0.769·27-s + 2.92·30-s − 2.87·31-s + 1.41·32-s + 36-s − 0.657·37-s − 3.84·39-s − 2.49·41-s − 1.82·43-s − 1.78·45-s − 1.15·48-s − 1/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 705600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 705600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(705600\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(44.9896\)
Root analytic conductor: \(2.58987\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 705600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p T + p T^{2} \)
3$C_1$ \( ( 1 - T )^{2} \)
5$C_2$ \( 1 + 4 T + p T^{2} \)
7$C_2$ \( 1 + T^{2} \)
good11$C_2$ \( ( 1 - p T^{2} )^{2} \)
13$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 90 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
67$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 16 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 190 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.827587621863316540391035609981, −9.524576000525702766417180619032, −8.938844465520380847061105951189, −8.926696698067073916940521242340, −8.076355883728250884671638837610, −8.045482269095616553945119907987, −7.49802308981296106456263057498, −7.35913607684984123440333953142, −6.85490533945410981959665742012, −6.70366099803928149041269369318, −5.26565231921234808176732281286, −4.95540436795898345333706998985, −4.62861318454356888034716074040, −3.91565065162201978974311969057, −3.31940275563986170186367689426, −2.96577385877494264927894341267, −2.07327500427967950594078941496, −1.71665184902814543981883396650, 0, 0, 1.71665184902814543981883396650, 2.07327500427967950594078941496, 2.96577385877494264927894341267, 3.31940275563986170186367689426, 3.91565065162201978974311969057, 4.62861318454356888034716074040, 4.95540436795898345333706998985, 5.26565231921234808176732281286, 6.70366099803928149041269369318, 6.85490533945410981959665742012, 7.35913607684984123440333953142, 7.49802308981296106456263057498, 8.045482269095616553945119907987, 8.076355883728250884671638837610, 8.926696698067073916940521242340, 8.938844465520380847061105951189, 9.524576000525702766417180619032, 9.827587621863316540391035609981

Graph of the $Z$-function along the critical line