Properties

Label 4-315e2-1.1-c1e2-0-17
Degree $4$
Conductor $99225$
Sign $1$
Analytic cond. $6.32667$
Root an. cond. $1.58596$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s + 5·7-s − 5·25-s + 10·28-s + 10·37-s − 5·43-s + 18·49-s − 8·64-s − 5·67-s + 4·79-s − 10·100-s + 19·109-s + 11·121-s + 127-s + 131-s + 137-s + 139-s + 20·148-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s − 10·172-s + 173-s − 25·175-s + ⋯
L(s)  = 1  + 4-s + 1.88·7-s − 25-s + 1.88·28-s + 1.64·37-s − 0.762·43-s + 18/7·49-s − 64-s − 0.610·67-s + 0.450·79-s − 100-s + 1.81·109-s + 121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 1.64·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.0769·169-s − 0.762·172-s + 0.0760·173-s − 1.88·175-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 99225 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 99225 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(99225\)    =    \(3^{4} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(6.32667\)
Root analytic conductor: \(1.58596\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 99225,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.389720482\)
\(L(\frac12)\) \(\approx\) \(2.389720482\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5$C_2$ \( 1 + p T^{2} \)
7$C_2$ \( 1 - 5 T + p T^{2} \)
good2$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
23$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 7 T + p T^{2} ) \)
37$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + T + p T^{2} ) \)
41$C_2$ \( ( 1 + p T^{2} )^{2} \)
43$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
47$C_2$ \( ( 1 + p T^{2} )^{2} \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - 13 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
67$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 16 T + p T^{2} ) \)
71$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \)
79$C_2$ \( ( 1 - 17 T + p T^{2} )( 1 + 13 T + p T^{2} ) \)
83$C_2$ \( ( 1 + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.666701525439978085811308809608, −8.941104923484224373050975615068, −8.546368934587619273226430073250, −7.968486753178926108508959829676, −7.56693266687474729542118165447, −7.30210105915125174102494200516, −6.48572745289681597519306363452, −6.06039738628443802450281714227, −5.45071950637189784126292696374, −4.80832105856080126763216830145, −4.37555080229996109256154673154, −3.61617877769699284494632874961, −2.59606963374854415313349396825, −2.07225487074358357683584536542, −1.31869238086390096442822435857, 1.31869238086390096442822435857, 2.07225487074358357683584536542, 2.59606963374854415313349396825, 3.61617877769699284494632874961, 4.37555080229996109256154673154, 4.80832105856080126763216830145, 5.45071950637189784126292696374, 6.06039738628443802450281714227, 6.48572745289681597519306363452, 7.30210105915125174102494200516, 7.56693266687474729542118165447, 7.968486753178926108508959829676, 8.546368934587619273226430073250, 8.941104923484224373050975615068, 9.666701525439978085811308809608

Graph of the $Z$-function along the critical line