L(s) = 1 | + (0.309 − 0.951i)2-s + (−0.809 − 0.587i)4-s + (−0.951 + 0.309i)5-s + (1.97 − 2.71i)7-s + (−0.809 + 0.587i)8-s + 0.999i·10-s + (3.27 + 0.536i)11-s + (2.94 + 0.956i)13-s + (−1.97 − 2.71i)14-s + (0.309 + 0.951i)16-s + (−0.169 − 0.522i)17-s + (−1.98 − 2.72i)19-s + (0.951 + 0.309i)20-s + (1.52 − 2.94i)22-s + 3.45i·23-s + ⋯ |
L(s) = 1 | + (0.218 − 0.672i)2-s + (−0.404 − 0.293i)4-s + (−0.425 + 0.138i)5-s + (0.746 − 1.02i)7-s + (−0.286 + 0.207i)8-s + 0.316i·10-s + (0.986 + 0.161i)11-s + (0.816 + 0.265i)13-s + (−0.527 − 0.726i)14-s + (0.0772 + 0.237i)16-s + (−0.0411 − 0.126i)17-s + (−0.455 − 0.626i)19-s + (0.212 + 0.0690i)20-s + (0.324 − 0.628i)22-s + 0.720i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.170 + 0.985i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.170 + 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.13377 - 1.34736i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.13377 - 1.34736i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.309 + 0.951i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.951 - 0.309i)T \) |
| 11 | \( 1 + (-3.27 - 0.536i)T \) |
good | 7 | \( 1 + (-1.97 + 2.71i)T + (-2.16 - 6.65i)T^{2} \) |
| 13 | \( 1 + (-2.94 - 0.956i)T + (10.5 + 7.64i)T^{2} \) |
| 17 | \( 1 + (0.169 + 0.522i)T + (-13.7 + 9.99i)T^{2} \) |
| 19 | \( 1 + (1.98 + 2.72i)T + (-5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 - 3.45iT - 23T^{2} \) |
| 29 | \( 1 + (0.129 + 0.0938i)T + (8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-3.08 + 9.49i)T + (-25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (3.95 + 2.87i)T + (11.4 + 35.1i)T^{2} \) |
| 41 | \( 1 + (-0.817 + 0.593i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + 8.23iT - 43T^{2} \) |
| 47 | \( 1 + (2.87 + 3.96i)T + (-14.5 + 44.6i)T^{2} \) |
| 53 | \( 1 + (2.18 + 0.709i)T + (42.8 + 31.1i)T^{2} \) |
| 59 | \( 1 + (-5.88 + 8.10i)T + (-18.2 - 56.1i)T^{2} \) |
| 61 | \( 1 + (-8.78 + 2.85i)T + (49.3 - 35.8i)T^{2} \) |
| 67 | \( 1 - 2.23T + 67T^{2} \) |
| 71 | \( 1 + (12.4 - 4.05i)T + (57.4 - 41.7i)T^{2} \) |
| 73 | \( 1 + (3.15 - 4.34i)T + (-22.5 - 69.4i)T^{2} \) |
| 79 | \( 1 + (-14.6 - 4.75i)T + (63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (-2.13 - 6.57i)T + (-67.1 + 48.7i)T^{2} \) |
| 89 | \( 1 + 1.34iT - 89T^{2} \) |
| 97 | \( 1 + (1.71 - 5.26i)T + (-78.4 - 57.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.894526093130674942914416295625, −9.009065406707651847995888050182, −8.173277181359395844180747910376, −7.22952360179548957159903340554, −6.40770529694599400307528849103, −5.14432116432073201720773760994, −4.08108753932481588822135542072, −3.72776968130637208225277155257, −2.08523474103960248072240843846, −0.870519964503165642594152598239,
1.46403851872214332642043382972, 3.09186417111089119243183617111, 4.18454007827372135399192900145, 5.04082978092604991039127324206, 6.02322407883396590530715204042, 6.66008804538724782857429108970, 7.85685813988309405198775029686, 8.620780560762141001891488917520, 8.870081881617122039296651380479, 10.18353968510494820146297907099