L(s) = 1 | + (0.5 − 0.866i)2-s + (−1.21 + 1.23i)3-s + (−0.499 − 0.866i)4-s + (0.866 − 0.5i)5-s + (0.462 + 1.66i)6-s + (1.10 + 0.637i)7-s − 0.999·8-s + (−0.0527 − 2.99i)9-s − 0.999i·10-s + (−2.15 − 2.51i)11-s + (1.67 + 0.433i)12-s + (−1.12 + 0.651i)13-s + (1.10 − 0.637i)14-s + (−0.433 + 1.67i)15-s + (−0.5 + 0.866i)16-s − 3.37·17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.700 + 0.713i)3-s + (−0.249 − 0.433i)4-s + (0.387 − 0.223i)5-s + (0.189 + 0.681i)6-s + (0.417 + 0.240i)7-s − 0.353·8-s + (−0.0175 − 0.999i)9-s − 0.316i·10-s + (−0.650 − 0.759i)11-s + (0.484 + 0.125i)12-s + (−0.313 + 0.180i)13-s + (0.295 − 0.170i)14-s + (−0.111 + 0.432i)15-s + (−0.125 + 0.216i)16-s − 0.818·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.475 + 0.879i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.475 + 0.879i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.571550 - 0.958330i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.571550 - 0.958330i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (1.21 - 1.23i)T \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (2.15 + 2.51i)T \) |
good | 7 | \( 1 + (-1.10 - 0.637i)T + (3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (1.12 - 0.651i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 3.37T + 17T^{2} \) |
| 19 | \( 1 + 5.39iT - 19T^{2} \) |
| 23 | \( 1 + (-1.82 + 1.05i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.37 + 4.11i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.73 - 3.00i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 9.60T + 37T^{2} \) |
| 41 | \( 1 + (4.86 + 8.41i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (8.29 + 4.79i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (6.51 + 3.76i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 5.11iT - 53T^{2} \) |
| 59 | \( 1 + (2.49 - 1.44i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.52 + 2.61i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.12 - 5.40i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 10.3iT - 71T^{2} \) |
| 73 | \( 1 + 14.1iT - 73T^{2} \) |
| 79 | \( 1 + (-5.22 - 3.01i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.809 + 1.40i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 8.53iT - 89T^{2} \) |
| 97 | \( 1 + (-5.59 + 9.69i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.961802455820719850195789205004, −9.029242747108172358980092588218, −8.425558655649603364528130650733, −6.87687784460424805472994104768, −6.03152080996957121828586311915, −5.03086763689068962092285108783, −4.68679832974135001868811247774, −3.36749973912944044931637051181, −2.24234469127013313475019123032, −0.49491494012457013927079045778,
1.58914061636268405186405982480, 2.84569097284587101511781130077, 4.52388038301840687129578622168, 5.08992895042462788448952954297, 6.14777575371765110329772319452, 6.71057268530132873808619767503, 7.76067278186630301914116144153, 8.058141088469211934849529059853, 9.496281581451966098900609867539, 10.32333317005138185993309921148