L(s) = 1 | + (0.5 − 0.866i)2-s + (1.07 + 1.35i)3-s + (−0.499 − 0.866i)4-s + (−0.866 + 0.5i)5-s + (1.71 − 0.254i)6-s + (−2.99 − 1.73i)7-s − 0.999·8-s + (−0.678 + 2.92i)9-s + 0.999i·10-s + (0.713 − 3.23i)11-s + (0.635 − 1.61i)12-s + (−4.08 + 2.36i)13-s + (−2.99 + 1.73i)14-s + (−1.61 − 0.635i)15-s + (−0.5 + 0.866i)16-s − 6.28·17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.622 + 0.782i)3-s + (−0.249 − 0.433i)4-s + (−0.387 + 0.223i)5-s + (0.699 − 0.104i)6-s + (−1.13 − 0.654i)7-s − 0.353·8-s + (−0.226 + 0.974i)9-s + 0.316i·10-s + (0.215 − 0.976i)11-s + (0.183 − 0.465i)12-s + (−1.13 + 0.654i)13-s + (−0.801 + 0.462i)14-s + (−0.415 − 0.164i)15-s + (−0.125 + 0.216i)16-s − 1.52·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 - 0.0957i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.995 - 0.0957i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00855616 + 0.178359i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00855616 + 0.178359i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (-1.07 - 1.35i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (-0.713 + 3.23i)T \) |
good | 7 | \( 1 + (2.99 + 1.73i)T + (3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (4.08 - 2.36i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 6.28T + 17T^{2} \) |
| 19 | \( 1 + 1.66iT - 19T^{2} \) |
| 23 | \( 1 + (2.01 - 1.16i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.90 + 3.30i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.66 + 2.88i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 1.17T + 37T^{2} \) |
| 41 | \( 1 + (-2.12 - 3.67i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.0168 + 0.00970i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (6.34 + 3.66i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 12.5iT - 53T^{2} \) |
| 59 | \( 1 + (0.935 - 0.540i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.56 + 1.48i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.90 - 5.02i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 12.9iT - 71T^{2} \) |
| 73 | \( 1 + 12.0iT - 73T^{2} \) |
| 79 | \( 1 + (-3.58 - 2.06i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.30 - 3.98i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 14.9iT - 89T^{2} \) |
| 97 | \( 1 + (-5.93 + 10.2i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.532202957946576370148286295420, −9.136423110159414560818897535543, −8.026799273863242191499781298963, −6.96485022015347013891906950334, −6.10331198154773330924786881148, −4.70460129544212585660099714051, −4.07017314227697523216446410744, −3.20919531644956201671345445807, −2.34317801309074045357584097774, −0.06109067997320622321108979350,
2.18278871312045667322012066822, 3.10803174074991487661578867873, 4.23088581190660127980044078544, 5.32112479142919844316855406418, 6.48633543853170771990039522822, 6.93052255114852584689036662763, 7.79411630834080802465805291554, 8.653713181041636617462264725182, 9.341613030559743127253579245279, 10.08310324814498205675085713310