L(s) = 1 | + (0.5 − 0.866i)2-s + (−1.72 − 0.123i)3-s + (−0.499 − 0.866i)4-s + (0.866 − 0.5i)5-s + (−0.971 + 1.43i)6-s + (−4.54 − 2.62i)7-s − 0.999·8-s + (2.96 + 0.428i)9-s − 0.999i·10-s + (0.660 − 3.25i)11-s + (0.756 + 1.55i)12-s + (−5.39 + 3.11i)13-s + (−4.54 + 2.62i)14-s + (−1.55 + 0.756i)15-s + (−0.5 + 0.866i)16-s + 4.35·17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.997 − 0.0715i)3-s + (−0.249 − 0.433i)4-s + (0.387 − 0.223i)5-s + (−0.396 + 0.585i)6-s + (−1.71 − 0.992i)7-s − 0.353·8-s + (0.989 + 0.142i)9-s − 0.316i·10-s + (0.199 − 0.979i)11-s + (0.218 + 0.449i)12-s + (−1.49 + 0.863i)13-s + (−1.21 + 0.701i)14-s + (−0.402 + 0.195i)15-s + (−0.125 + 0.216i)16-s + 1.05·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.00522 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.00522 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00694557 + 0.00698197i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00694557 + 0.00698197i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (1.72 + 0.123i)T \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
| 11 | \( 1 + (-0.660 + 3.25i)T \) |
good | 7 | \( 1 + (4.54 + 2.62i)T + (3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (5.39 - 3.11i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 4.35T + 17T^{2} \) |
| 19 | \( 1 - 0.748iT - 19T^{2} \) |
| 23 | \( 1 + (-2.87 + 1.66i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (5.20 - 9.01i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.83 - 4.90i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 7.09T + 37T^{2} \) |
| 41 | \( 1 + (2.75 + 4.76i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.41 + 0.817i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.640 - 0.369i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 2.46iT - 53T^{2} \) |
| 59 | \( 1 + (0.877 - 0.506i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.800 + 0.462i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.821 + 1.42i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6.56iT - 71T^{2} \) |
| 73 | \( 1 - 9.67iT - 73T^{2} \) |
| 79 | \( 1 + (10.6 + 6.17i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.86 - 4.95i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 8.41iT - 89T^{2} \) |
| 97 | \( 1 + (-8.16 + 14.1i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26576082882961520135657898258, −9.720694272324428355534550589041, −8.931166888948995415492779654565, −7.15891304724522758207683303607, −6.82226186153794856487274265167, −5.78528959953061066205291670764, −5.02526336738307840009457750153, −3.89191850500981723979548146817, −3.03421649458191401129499121377, −1.29793755821717536754576161046,
0.00476788078336031630484559205, 2.42470041853154295160344007457, 3.50698851277361599580681948121, 4.86665502082417788343665521459, 5.60116045872414223751463837553, 6.21872882292987515187587820947, 7.02878850773615098701014775776, 7.71620897459818254520962667385, 9.317370028421237906681707042831, 9.788639427858377931269912647611