L(s) = 1 | + (0.5 + 0.866i)2-s + (1.55 − 0.767i)3-s + (−0.499 + 0.866i)4-s + (−0.866 − 0.5i)5-s + (1.44 + 0.961i)6-s + (2.96 − 1.71i)7-s − 0.999·8-s + (1.82 − 2.38i)9-s − 0.999i·10-s + (−1.23 − 3.07i)11-s + (−0.112 + 1.72i)12-s + (−4.74 − 2.73i)13-s + (2.96 + 1.71i)14-s + (−1.72 − 0.112i)15-s + (−0.5 − 0.866i)16-s + 0.378·17-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.896 − 0.442i)3-s + (−0.249 + 0.433i)4-s + (−0.387 − 0.223i)5-s + (0.588 + 0.392i)6-s + (1.12 − 0.647i)7-s − 0.353·8-s + (0.607 − 0.794i)9-s − 0.316i·10-s + (−0.372 − 0.927i)11-s + (−0.0323 + 0.498i)12-s + (−1.31 − 0.759i)13-s + (0.792 + 0.457i)14-s + (−0.446 − 0.0289i)15-s + (−0.125 − 0.216i)16-s + 0.0917·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.813 + 0.581i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.813 + 0.581i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.32324 - 0.744302i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.32324 - 0.744302i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (-1.55 + 0.767i)T \) |
| 5 | \( 1 + (0.866 + 0.5i)T \) |
| 11 | \( 1 + (1.23 + 3.07i)T \) |
good | 7 | \( 1 + (-2.96 + 1.71i)T + (3.5 - 6.06i)T^{2} \) |
| 13 | \( 1 + (4.74 + 2.73i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 0.378T + 17T^{2} \) |
| 19 | \( 1 + 4.27iT - 19T^{2} \) |
| 23 | \( 1 + (-6.38 - 3.68i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.06 - 3.57i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.297 + 0.515i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 6.06T + 37T^{2} \) |
| 41 | \( 1 + (3.59 - 6.22i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (4.81 - 2.77i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-9.49 + 5.48i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 3.08iT - 53T^{2} \) |
| 59 | \( 1 + (-8.97 - 5.17i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.14 + 4.12i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.73 + 3.00i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 12.3iT - 71T^{2} \) |
| 73 | \( 1 - 9.64iT - 73T^{2} \) |
| 79 | \( 1 + (-12.2 + 7.07i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.713 - 1.23i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 12.9iT - 89T^{2} \) |
| 97 | \( 1 + (-5.56 - 9.63i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.704850531975664999933843188076, −8.630153018791379907312727704905, −8.211398659420167646116572218975, −7.33172328685380948453210692174, −6.96376470572490469019115504430, −5.34324083399191024128921097258, −4.77505474540661662435179767879, −3.57570728204891364768334507091, −2.65622343343785157461955213538, −0.944248073590390485191684212459,
1.92572052595793098398880492839, 2.51074965376168976896075643305, 3.78851326615592731024973015596, 4.77516108640083980518028961252, 5.15318588343549690031084995524, 6.89697251130037133854035545579, 7.70253837048745093555300806345, 8.534772006906482620511287392209, 9.286687109433047531675615459936, 10.17331418059740576638460464410