L(s) = 1 | + (0.5 + 0.866i)2-s + (0.761 − 1.55i)3-s + (−0.499 + 0.866i)4-s + (0.866 + 0.5i)5-s + (1.72 − 0.118i)6-s + (2.83 − 1.63i)7-s − 0.999·8-s + (−1.83 − 2.36i)9-s + 0.999i·10-s + (−0.898 + 3.19i)11-s + (0.966 + 1.43i)12-s + (2.49 + 1.44i)13-s + (2.83 + 1.63i)14-s + (1.43 − 0.966i)15-s + (−0.5 − 0.866i)16-s + 1.88·17-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.439 − 0.898i)3-s + (−0.249 + 0.433i)4-s + (0.387 + 0.223i)5-s + (0.705 − 0.0482i)6-s + (1.06 − 0.617i)7-s − 0.353·8-s + (−0.613 − 0.789i)9-s + 0.316i·10-s + (−0.271 + 0.962i)11-s + (0.278 + 0.414i)12-s + (0.692 + 0.399i)13-s + (0.756 + 0.436i)14-s + (0.371 − 0.249i)15-s + (−0.125 − 0.216i)16-s + 0.456·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0366i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0366i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.59170 + 0.0475078i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.59170 + 0.0475078i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (-0.761 + 1.55i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (0.898 - 3.19i)T \) |
good | 7 | \( 1 + (-2.83 + 1.63i)T + (3.5 - 6.06i)T^{2} \) |
| 13 | \( 1 + (-2.49 - 1.44i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 1.88T + 17T^{2} \) |
| 19 | \( 1 + 4.33iT - 19T^{2} \) |
| 23 | \( 1 + (-6.17 - 3.56i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.688 + 1.19i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.78 + 3.08i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 7.24T + 37T^{2} \) |
| 41 | \( 1 + (-3.83 + 6.63i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.89 + 3.98i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (8.91 - 5.14i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 3.25iT - 53T^{2} \) |
| 59 | \( 1 + (1.31 + 0.758i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.49 + 3.74i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.84 + 3.20i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 15.6iT - 71T^{2} \) |
| 73 | \( 1 - 11.3iT - 73T^{2} \) |
| 79 | \( 1 + (11.3 - 6.54i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.462 - 0.801i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 2.39iT - 89T^{2} \) |
| 97 | \( 1 + (8.05 + 13.9i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.791867217317451368747424112012, −8.913408012983683649483489556028, −8.132408068280354743801624837007, −7.19772083211250850301987384764, −6.99001663019477643912873225960, −5.74776717314851652526184901511, −4.86293900572862837408375484795, −3.77057939950788407540236333596, −2.47280966742831850864213155410, −1.29491394821596702913410222425,
1.43053105481580831137207899473, 2.74521024557986642795754367252, 3.55097522712972685879285339342, 4.76837711197937884030632955607, 5.35106232405674403026874935996, 6.13581861773682028923358519081, 7.916668360238112096775173320951, 8.552887084070243445218953360382, 9.097088044932302845031094040626, 10.18139841445639726844811636950