L(s) = 1 | + (−0.5 − 0.866i)2-s + (1.64 + 0.531i)3-s + (−0.499 + 0.866i)4-s + (0.866 + 0.5i)5-s + (−0.364 − 1.69i)6-s + (2.35 − 1.36i)7-s + 0.999·8-s + (2.43 + 1.75i)9-s − 0.999i·10-s + (−2.38 + 2.30i)11-s + (−1.28 + 1.16i)12-s + (−0.564 − 0.326i)13-s + (−2.35 − 1.36i)14-s + (1.16 + 1.28i)15-s + (−0.5 − 0.866i)16-s + 4.02·17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.951 + 0.306i)3-s + (−0.249 + 0.433i)4-s + (0.387 + 0.223i)5-s + (−0.148 − 0.691i)6-s + (0.890 − 0.514i)7-s + 0.353·8-s + (0.811 + 0.583i)9-s − 0.316i·10-s + (−0.719 + 0.694i)11-s + (−0.370 + 0.335i)12-s + (−0.156 − 0.0904i)13-s + (−0.629 − 0.363i)14-s + (0.300 + 0.331i)15-s + (−0.125 − 0.216i)16-s + 0.977·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.979 + 0.202i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.979 + 0.202i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.14238 - 0.219592i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.14238 - 0.219592i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (-1.64 - 0.531i)T \) |
| 5 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (2.38 - 2.30i)T \) |
good | 7 | \( 1 + (-2.35 + 1.36i)T + (3.5 - 6.06i)T^{2} \) |
| 13 | \( 1 + (0.564 + 0.326i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 4.02T + 17T^{2} \) |
| 19 | \( 1 + 4.60iT - 19T^{2} \) |
| 23 | \( 1 + (-5.00 - 2.89i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.697 + 1.20i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.685 + 1.18i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 5.64T + 37T^{2} \) |
| 41 | \( 1 + (2.47 - 4.28i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (7.92 - 4.57i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-10.2 + 5.92i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 8.28iT - 53T^{2} \) |
| 59 | \( 1 + (-3.30 - 1.91i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.88 + 3.97i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.07 + 7.06i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 4.74iT - 71T^{2} \) |
| 73 | \( 1 + 8.63iT - 73T^{2} \) |
| 79 | \( 1 + (14.1 - 8.16i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-0.414 - 0.717i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 15.2iT - 89T^{2} \) |
| 97 | \( 1 + (-2.76 - 4.79i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.976713471455205237223811976331, −9.274548580400442589036402888299, −8.379673930688057093497699712205, −7.60265611520481708933616585963, −7.05036299527167082883614586590, −5.23267176161332204576476287322, −4.58990879188143246814476017197, −3.38558912961803129865311685983, −2.48106477695264698033185964287, −1.41111069330288948107610768891,
1.25541687656294707340902808114, 2.40132942804608988028538144222, 3.64300752551091104244763111313, 5.05739436422764450574213914132, 5.65298189858949375610064892973, 6.85696495692400816163331750426, 7.67905665926777072257270524581, 8.574658518706731450919921482148, 8.660706135938206399240559321825, 9.909456404511962945850487225089