L(s) = 1 | + (−0.866 − 0.5i)2-s + (−0.690 − 1.58i)3-s + (0.499 + 0.866i)4-s + (−1.04 − 1.97i)5-s + (−0.196 + 1.72i)6-s + (0.998 − 1.72i)7-s − 0.999i·8-s + (−2.04 + 2.19i)9-s + (−0.0827 + 2.23i)10-s + (0.989 − 3.16i)11-s + (1.03 − 1.39i)12-s + (−0.497 − 0.862i)13-s + (−1.72 + 0.998i)14-s + (−2.41 + 3.02i)15-s + (−0.5 + 0.866i)16-s − 0.515i·17-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (−0.398 − 0.917i)3-s + (0.249 + 0.433i)4-s + (−0.467 − 0.883i)5-s + (−0.0802 + 0.702i)6-s + (0.377 − 0.653i)7-s − 0.353i·8-s + (−0.682 + 0.730i)9-s + (−0.0261 + 0.706i)10-s + (0.298 − 0.954i)11-s + (0.297 − 0.401i)12-s + (−0.138 − 0.239i)13-s + (−0.462 + 0.266i)14-s + (−0.624 + 0.781i)15-s + (−0.125 + 0.216i)16-s − 0.125i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.736 - 0.675i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.736 - 0.675i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.224509 + 0.576911i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.224509 + 0.576911i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 + (0.690 + 1.58i)T \) |
| 5 | \( 1 + (1.04 + 1.97i)T \) |
| 11 | \( 1 + (-0.989 + 3.16i)T \) |
good | 7 | \( 1 + (-0.998 + 1.72i)T + (-3.5 - 6.06i)T^{2} \) |
| 13 | \( 1 + (0.497 + 0.862i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 0.515iT - 17T^{2} \) |
| 19 | \( 1 + 3.42iT - 19T^{2} \) |
| 23 | \( 1 + (2.97 + 5.14i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.19 + 3.80i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.0604 - 0.104i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 7.46iT - 37T^{2} \) |
| 41 | \( 1 + (2.08 + 3.61i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.0818 + 0.141i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.478 - 0.828i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 1.55T + 53T^{2} \) |
| 59 | \( 1 + (3.95 - 2.28i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.10 - 2.94i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.990 - 0.571i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 0.982iT - 71T^{2} \) |
| 73 | \( 1 + 10.8T + 73T^{2} \) |
| 79 | \( 1 + (-6.91 - 3.99i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-10.9 - 6.34i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 9.77iT - 89T^{2} \) |
| 97 | \( 1 + (0.229 + 0.132i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.338332323507096063426116846869, −8.363899148650856985005943703670, −8.075046005198382465856260146598, −7.10157545046676521595709087690, −6.23171783948023998914673388680, −5.09063761430466479145723180354, −4.09397698065821087121385295368, −2.70218336975114648946194242942, −1.27124878991704046166110121011, −0.40123690003804736415630150406,
1.97677566357054672172462399580, 3.37404214467189666482671149134, 4.38982253216873926139351414358, 5.44140325466880023930767836466, 6.26912763467631307274667186156, 7.17888278781146322898049180123, 8.027456465852615740556100148189, 8.961445712462503497671343798623, 9.756526543519564248412738316016, 10.32942256859387064386250407205