L(s) = 1 | + (0.809 − 0.587i)2-s + (0.309 − 0.951i)4-s + (0.809 + 0.587i)5-s + (−0.427 + 1.31i)7-s + (−0.309 − 0.951i)8-s + 10-s + (−1.69 + 2.85i)11-s + (3.92 − 2.85i)13-s + (0.427 + 1.31i)14-s + (−0.809 − 0.587i)16-s + (5.23 + 3.80i)17-s + (−1.5 − 4.61i)19-s + (0.809 − 0.587i)20-s + (0.309 + 3.30i)22-s + 8.61·23-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (0.154 − 0.475i)4-s + (0.361 + 0.262i)5-s + (−0.161 + 0.496i)7-s + (−0.109 − 0.336i)8-s + 0.316·10-s + (−0.509 + 0.860i)11-s + (1.08 − 0.791i)13-s + (0.114 + 0.351i)14-s + (−0.202 − 0.146i)16-s + (1.26 + 0.922i)17-s + (−0.344 − 1.05i)19-s + (0.180 − 0.131i)20-s + (0.0658 + 0.704i)22-s + 1.79·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 + 0.242i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.970 + 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.40664 - 0.295840i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.40664 - 0.295840i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.809 + 0.587i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 + (1.69 - 2.85i)T \) |
good | 7 | \( 1 + (0.427 - 1.31i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-3.92 + 2.85i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-5.23 - 3.80i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.5 + 4.61i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 8.61T + 23T^{2} \) |
| 29 | \( 1 + (2.23 - 6.88i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-5.85 + 4.25i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (0.972 - 2.99i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.336 - 1.03i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 1.23T + 43T^{2} \) |
| 47 | \( 1 + (3.64 + 11.2i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (10.5 - 7.69i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.88 + 8.86i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-3 - 2.17i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 15.7T + 67T^{2} \) |
| 71 | \( 1 + (-6.61 - 4.80i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.618 + 1.90i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-2.85 + 2.07i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (5.23 + 3.80i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 11.5T + 89T^{2} \) |
| 97 | \( 1 + (-1.61 + 1.17i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.19348473980852661215391039525, −9.246825720023063387322298342253, −8.387547921798834450654837000629, −7.29842584034170862783228177168, −6.36521868899727894506499038264, −5.53187184525338216601142398175, −4.78538462266926571799223046442, −3.43007153591658744281415598712, −2.69852691211289336250183180594, −1.33795065953779212650964314136,
1.16938040210023586152229319762, 2.89523352286403075452594167667, 3.77520598907886227202609143636, 4.86113077297688733616757943236, 5.76367592125149706600540411370, 6.44049559755280382380478007175, 7.45355328094228359511264639222, 8.256918625452361693653691897339, 9.085493119032372939215753319989, 10.01591816866709659283710728097