L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (1.22 − 1.87i)5-s + (−0.645 − 0.645i)7-s + (−0.707 + 0.707i)8-s + (2.18 − 0.456i)10-s + (−3.29 + 0.414i)11-s + (4.97 − 4.97i)13-s − 0.912i·14-s − 1.00·16-s + (2.29 + 2.29i)17-s + 4.82·19-s + (1.87 + 1.22i)20-s + (−2.61 − 2.03i)22-s + (−3.14 − 3.14i)23-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + 0.500i·4-s + (0.547 − 0.836i)5-s + (−0.243 − 0.243i)7-s + (−0.250 + 0.250i)8-s + (0.692 − 0.144i)10-s + (−0.992 + 0.124i)11-s + (1.37 − 1.37i)13-s − 0.243i·14-s − 0.250·16-s + (0.555 + 0.555i)17-s + 1.10·19-s + (0.418 + 0.273i)20-s + (−0.558 − 0.433i)22-s + (−0.656 − 0.656i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.975 + 0.221i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.975 + 0.221i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.21142 - 0.247424i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.21142 - 0.247424i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.22 + 1.87i)T \) |
| 11 | \( 1 + (3.29 - 0.414i)T \) |
good | 7 | \( 1 + (0.645 + 0.645i)T + 7iT^{2} \) |
| 13 | \( 1 + (-4.97 + 4.97i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2.29 - 2.29i)T + 17iT^{2} \) |
| 19 | \( 1 - 4.82T + 19T^{2} \) |
| 23 | \( 1 + (3.14 + 3.14i)T + 23iT^{2} \) |
| 29 | \( 1 - 3.92T + 29T^{2} \) |
| 31 | \( 1 - 4.65T + 31T^{2} \) |
| 37 | \( 1 + (-3.41 + 3.41i)T - 37iT^{2} \) |
| 41 | \( 1 + 3.34iT - 41T^{2} \) |
| 43 | \( 1 + (-1.04 + 1.04i)T - 43iT^{2} \) |
| 47 | \( 1 + (3.88 - 3.88i)T - 47iT^{2} \) |
| 53 | \( 1 + (-1.81 - 1.81i)T + 53iT^{2} \) |
| 59 | \( 1 + 2.99iT - 59T^{2} \) |
| 61 | \( 1 - 14.7iT - 61T^{2} \) |
| 67 | \( 1 + (7.70 - 7.70i)T - 67iT^{2} \) |
| 71 | \( 1 + 10.9T + 71T^{2} \) |
| 73 | \( 1 + (-7.29 + 7.29i)T - 73iT^{2} \) |
| 79 | \( 1 + 5.91T + 79T^{2} \) |
| 83 | \( 1 + (-6.14 + 6.14i)T - 83iT^{2} \) |
| 89 | \( 1 - 0.726iT - 89T^{2} \) |
| 97 | \( 1 + (3.75 - 3.75i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.16347816145409969030373037557, −8.905208275970905054526383451951, −8.174508575060453581095321632186, −7.59719943621718180658578555679, −6.19910220009732132008903498816, −5.71043131126748742684547197603, −4.89524982815279797131979721859, −3.77101221269540663301252597909, −2.70821177870632969896556168755, −0.975042705947011458359065949049,
1.51052737622203350367999591850, 2.75796641704463493094393953418, 3.46829591661015962982138562343, 4.73049359729419171041634874159, 5.79456519800338599466082248531, 6.36150511799207653077621203400, 7.35550104394947288272196752762, 8.423737810633580493048020382839, 9.605258809898480849044804895056, 9.927685546409783636914250769679