L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (0.707 + 2.12i)5-s + (−2.12 − 2.12i)7-s + (0.707 − 0.707i)8-s + (0.999 − 2i)10-s + (1.41 + 3i)11-s + (−3 + 3i)13-s + 3i·14-s − 1.00·16-s + (−5.12 − 5.12i)17-s + 3·19-s + (−2.12 + 0.707i)20-s + (1.12 − 3.12i)22-s + (0.171 + 0.171i)23-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + 0.500i·4-s + (0.316 + 0.948i)5-s + (−0.801 − 0.801i)7-s + (0.250 − 0.250i)8-s + (0.316 − 0.632i)10-s + (0.426 + 0.904i)11-s + (−0.832 + 0.832i)13-s + 0.801i·14-s − 0.250·16-s + (−1.24 − 1.24i)17-s + 0.688·19-s + (−0.474 + 0.158i)20-s + (0.239 − 0.665i)22-s + (0.0357 + 0.0357i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.838 - 0.545i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.838 - 0.545i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0724969 + 0.244407i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0724969 + 0.244407i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.707 - 2.12i)T \) |
| 11 | \( 1 + (-1.41 - 3i)T \) |
good | 7 | \( 1 + (2.12 + 2.12i)T + 7iT^{2} \) |
| 13 | \( 1 + (3 - 3i)T - 13iT^{2} \) |
| 17 | \( 1 + (5.12 + 5.12i)T + 17iT^{2} \) |
| 19 | \( 1 - 3T + 19T^{2} \) |
| 23 | \( 1 + (-0.171 - 0.171i)T + 23iT^{2} \) |
| 29 | \( 1 + 1.24T + 29T^{2} \) |
| 31 | \( 1 + 7.24T + 31T^{2} \) |
| 37 | \( 1 + (-0.121 + 0.121i)T - 37iT^{2} \) |
| 41 | \( 1 - 1.75iT - 41T^{2} \) |
| 43 | \( 1 + (1.24 - 1.24i)T - 43iT^{2} \) |
| 47 | \( 1 + (4.41 - 4.41i)T - 47iT^{2} \) |
| 53 | \( 1 + (9.53 + 9.53i)T + 53iT^{2} \) |
| 59 | \( 1 - 1.41iT - 59T^{2} \) |
| 61 | \( 1 + 7.24iT - 61T^{2} \) |
| 67 | \( 1 + (4 - 4i)T - 67iT^{2} \) |
| 71 | \( 1 - 1.24T + 71T^{2} \) |
| 73 | \( 1 + (6 - 6i)T - 73iT^{2} \) |
| 79 | \( 1 + 10.2T + 79T^{2} \) |
| 83 | \( 1 + (7.24 - 7.24i)T - 83iT^{2} \) |
| 89 | \( 1 - 5.48iT - 89T^{2} \) |
| 97 | \( 1 + (2.24 - 2.24i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06814874089692175827143940935, −9.658413398323979120935557675098, −9.110825616721331033141590773952, −7.53432999414304979066887316585, −7.03875008288551431915457889067, −6.51816296474292181509996319272, −4.91621710190037144710798618331, −3.89574342940647732866082279220, −2.87277926157484832720126491544, −1.86367778932178693395655009509,
0.12965642729069762410885000922, 1.77275148522692929384719701729, 3.16055429791041915589656037655, 4.52911004918519246591801350121, 5.70859126105264996977634910836, 5.97551903719616258380223104972, 7.14511086555267631416372645790, 8.216094830579317962400973741648, 8.876410798855578327196864980152, 9.368361762726151832019126848624