L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (1.80 − 1.31i)5-s + (3.12 − 3.12i)7-s + (−0.707 + 0.707i)8-s + (2.20 + 0.345i)10-s + i·11-s + (−0.0741 − 0.0741i)13-s + 4.41·14-s − 1.00·16-s + (−2.26 − 2.26i)17-s − 0.608i·19-s + (1.31 + 1.80i)20-s + (−0.707 + 0.707i)22-s + (2.33 − 2.33i)23-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + 0.500i·4-s + (0.807 − 0.589i)5-s + (1.18 − 1.18i)7-s + (−0.250 + 0.250i)8-s + (0.698 + 0.109i)10-s + 0.301i·11-s + (−0.0205 − 0.0205i)13-s + 1.18·14-s − 0.250·16-s + (−0.548 − 0.548i)17-s − 0.139i·19-s + (0.294 + 0.403i)20-s + (−0.150 + 0.150i)22-s + (0.486 − 0.486i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.995 + 0.0930i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.995 + 0.0930i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.63006 - 0.122602i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.63006 - 0.122602i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.80 + 1.31i)T \) |
| 11 | \( 1 - iT \) |
good | 7 | \( 1 + (-3.12 + 3.12i)T - 7iT^{2} \) |
| 13 | \( 1 + (0.0741 + 0.0741i)T + 13iT^{2} \) |
| 17 | \( 1 + (2.26 + 2.26i)T + 17iT^{2} \) |
| 19 | \( 1 + 0.608iT - 19T^{2} \) |
| 23 | \( 1 + (-2.33 + 2.33i)T - 23iT^{2} \) |
| 29 | \( 1 + 1.78T + 29T^{2} \) |
| 31 | \( 1 + 4.66T + 31T^{2} \) |
| 37 | \( 1 + (-6.04 + 6.04i)T - 37iT^{2} \) |
| 41 | \( 1 - 11.6iT - 41T^{2} \) |
| 43 | \( 1 + (-2.89 - 2.89i)T + 43iT^{2} \) |
| 47 | \( 1 + (-1.82 - 1.82i)T + 47iT^{2} \) |
| 53 | \( 1 + (7.79 - 7.79i)T - 53iT^{2} \) |
| 59 | \( 1 + 3.13T + 59T^{2} \) |
| 61 | \( 1 - 14.5T + 61T^{2} \) |
| 67 | \( 1 + (-0.791 + 0.791i)T - 67iT^{2} \) |
| 71 | \( 1 - 16.1iT - 71T^{2} \) |
| 73 | \( 1 + (-1.67 - 1.67i)T + 73iT^{2} \) |
| 79 | \( 1 - 1.69iT - 79T^{2} \) |
| 83 | \( 1 + (6.00 - 6.00i)T - 83iT^{2} \) |
| 89 | \( 1 - 0.539T + 89T^{2} \) |
| 97 | \( 1 + (8.80 - 8.80i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.886407514423304051336558894619, −9.085400518562321359412310646722, −8.144543518386634583872221083679, −7.41811719718981734301444552872, −6.59331078875660218715224914053, −5.50824187983746317840062921883, −4.70443430896099680546935556154, −4.14538404440720094833566295449, −2.49158370418655934344117860423, −1.16916423266595455464405344341,
1.71278391997396938467862305048, 2.39050388669600033281243765402, 3.57174454805646907430560033627, 4.90439273095740082508132975274, 5.57714414685324813321606684832, 6.28577139196835077708724136051, 7.43206030186136388713829397897, 8.574318458559657960445394869163, 9.185192135047452964505999624208, 10.14157370557413317251390226257