L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−1.77 + 1.35i)5-s + (−0.425 − 0.425i)7-s + (0.707 + 0.707i)8-s + (0.301 − 2.21i)10-s − i·11-s + (0.719 − 0.719i)13-s + 0.602·14-s − 1.00·16-s + (−2.48 + 2.48i)17-s − 5.57i·19-s + (1.35 + 1.77i)20-s + (0.707 + 0.707i)22-s + (−0.605 − 0.605i)23-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s − 0.500i·4-s + (−0.795 + 0.605i)5-s + (−0.160 − 0.160i)7-s + (0.250 + 0.250i)8-s + (0.0952 − 0.700i)10-s − 0.301i·11-s + (0.199 − 0.199i)13-s + 0.160·14-s − 0.250·16-s + (−0.603 + 0.603i)17-s − 1.27i·19-s + (0.302 + 0.397i)20-s + (0.150 + 0.150i)22-s + (−0.126 − 0.126i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.760551 - 0.209175i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.760551 - 0.209175i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.77 - 1.35i)T \) |
| 11 | \( 1 + iT \) |
good | 7 | \( 1 + (0.425 + 0.425i)T + 7iT^{2} \) |
| 13 | \( 1 + (-0.719 + 0.719i)T - 13iT^{2} \) |
| 17 | \( 1 + (2.48 - 2.48i)T - 17iT^{2} \) |
| 19 | \( 1 + 5.57iT - 19T^{2} \) |
| 23 | \( 1 + (0.605 + 0.605i)T + 23iT^{2} \) |
| 29 | \( 1 - 2.10T + 29T^{2} \) |
| 31 | \( 1 - 1.21T + 31T^{2} \) |
| 37 | \( 1 + (-1.39 - 1.39i)T + 37iT^{2} \) |
| 41 | \( 1 + 1.73iT - 41T^{2} \) |
| 43 | \( 1 + (-1.80 + 1.80i)T - 43iT^{2} \) |
| 47 | \( 1 + (-9.34 + 9.34i)T - 47iT^{2} \) |
| 53 | \( 1 + (-1.63 - 1.63i)T + 53iT^{2} \) |
| 59 | \( 1 - 3.88T + 59T^{2} \) |
| 61 | \( 1 - 10.3T + 61T^{2} \) |
| 67 | \( 1 + (-0.179 - 0.179i)T + 67iT^{2} \) |
| 71 | \( 1 + 6.06iT - 71T^{2} \) |
| 73 | \( 1 + (-0.0583 + 0.0583i)T - 73iT^{2} \) |
| 79 | \( 1 + 10.8iT - 79T^{2} \) |
| 83 | \( 1 + (4.03 + 4.03i)T + 83iT^{2} \) |
| 89 | \( 1 + 11.1T + 89T^{2} \) |
| 97 | \( 1 + (-5.25 - 5.25i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.975727580014486167661462098513, −8.793479220328677906354349006357, −8.360744554109229731407998467528, −7.27336083886952573991977398151, −6.78522422684669604575383535590, −5.83995865907526086022517281512, −4.63381019803614629096665512269, −3.64416973128631983225432200524, −2.42200906469185177122596853270, −0.50981988281906613942955267169,
1.12657049896518670146797265346, 2.54926616173796264244701791009, 3.79624492721406913005634670894, 4.52576789966430772738378053206, 5.71808610587504770396438667133, 6.91168682752253986552218025044, 7.77377268660530284703983311648, 8.459123287233877126478172368345, 9.250061754911363176520032251890, 9.948817060483863991302916536684