L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.513 + 1.65i)3-s + (−0.499 + 0.866i)4-s + (−0.5 + 0.866i)5-s + (1.17 − 1.27i)6-s + (2.32 + 4.02i)7-s + 0.999·8-s + (−2.47 + 1.69i)9-s + 0.999·10-s + (−0.5 − 0.866i)11-s + (−1.68 − 0.382i)12-s + (−2.26 + 3.92i)13-s + (2.32 − 4.02i)14-s + (−1.68 − 0.382i)15-s + (−0.5 − 0.866i)16-s − 6.45·17-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.296 + 0.954i)3-s + (−0.249 + 0.433i)4-s + (−0.223 + 0.387i)5-s + (0.479 − 0.519i)6-s + (0.877 + 1.52i)7-s + 0.353·8-s + (−0.824 + 0.566i)9-s + 0.316·10-s + (−0.150 − 0.261i)11-s + (−0.487 − 0.110i)12-s + (−0.628 + 1.08i)13-s + (0.620 − 1.07i)14-s + (−0.436 − 0.0986i)15-s + (−0.125 − 0.216i)16-s − 1.56·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 - 0.713i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.701 - 0.713i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.423717 + 1.01071i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.423717 + 1.01071i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.513 - 1.65i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 + (0.5 + 0.866i)T \) |
good | 7 | \( 1 + (-2.32 - 4.02i)T + (-3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (2.26 - 3.92i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 6.45T + 17T^{2} \) |
| 19 | \( 1 - 7.32T + 19T^{2} \) |
| 23 | \( 1 + (-0.277 + 0.481i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.658 + 1.13i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.76 + 6.52i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 5.35T + 37T^{2} \) |
| 41 | \( 1 + (-0.989 + 1.71i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.18 + 5.51i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.735 - 1.27i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 8.77T + 53T^{2} \) |
| 59 | \( 1 + (4.37 - 7.57i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.743 - 1.28i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7.40 - 12.8i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 6.84T + 71T^{2} \) |
| 73 | \( 1 - 1.09T + 73T^{2} \) |
| 79 | \( 1 + (-3.92 - 6.79i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.75 - 3.04i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 13.3T + 89T^{2} \) |
| 97 | \( 1 + (-3.97 - 6.87i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.23649146910086303534271191334, −9.354045736568847158211198363234, −8.886518970561629343554828125681, −8.187655413183310234266854441504, −7.13848526865838574481253924624, −5.73133938588463587295681677611, −4.89392487322527783426977797867, −4.04197132896045967734353032214, −2.73404531648822662631369235729, −2.13966512278636021599988641096,
0.54803227193429155928139697957, 1.61882724245877564374595691118, 3.24126706693116434301414363568, 4.61573597382185290302585782547, 5.30596551331293619153818082986, 6.69294355230847829866634668015, 7.30317596439601475899909941369, 7.85638720092165343132592934820, 8.502813536477692046585791650278, 9.517254647294296446641981055423