L(s) = 1 | + (0.5 + 0.866i)2-s + (1.70 + 0.300i)3-s + (−0.499 + 0.866i)4-s + (0.5 − 0.866i)5-s + (0.592 + 1.62i)6-s + (1.93 + 3.35i)7-s − 0.999·8-s + (2.81 + 1.02i)9-s + 0.999·10-s + (0.5 + 0.866i)11-s + (−1.11 + 1.32i)12-s + (1.85 − 3.21i)13-s + (−1.93 + 3.35i)14-s + (1.11 − 1.32i)15-s + (−0.5 − 0.866i)16-s − 4.63·17-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.984 + 0.173i)3-s + (−0.249 + 0.433i)4-s + (0.223 − 0.387i)5-s + (0.241 + 0.664i)6-s + (0.733 + 1.26i)7-s − 0.353·8-s + (0.939 + 0.342i)9-s + 0.316·10-s + (0.150 + 0.261i)11-s + (−0.321 + 0.383i)12-s + (0.515 − 0.892i)13-s + (−0.518 + 0.897i)14-s + (0.287 − 0.342i)15-s + (−0.125 − 0.216i)16-s − 1.12·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.173 - 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.27053 + 1.90520i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.27053 + 1.90520i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (-1.70 - 0.300i)T \) |
| 5 | \( 1 + (-0.5 + 0.866i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
good | 7 | \( 1 + (-1.93 - 3.35i)T + (-3.5 + 6.06i)T^{2} \) |
| 13 | \( 1 + (-1.85 + 3.21i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 4.63T + 17T^{2} \) |
| 19 | \( 1 - 3.59T + 19T^{2} \) |
| 23 | \( 1 + (0.754 - 1.30i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.85 + 6.68i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.439 - 0.761i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 3.16T + 37T^{2} \) |
| 41 | \( 1 + (5.02 - 8.70i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.20 + 3.82i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.05 - 3.55i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 5.59T + 53T^{2} \) |
| 59 | \( 1 + (1.04 - 1.81i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.294 + 0.509i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.86 + 6.69i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 12.1T + 71T^{2} \) |
| 73 | \( 1 - 10.0T + 73T^{2} \) |
| 79 | \( 1 + (-1.90 - 3.30i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (6.31 + 10.9i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 15.7T + 89T^{2} \) |
| 97 | \( 1 + (-2.03 - 3.53i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.770673425917215931195346300895, −9.161609293228845437837290144741, −8.346960340569776108621072040330, −7.980840467472106340380579430752, −6.83359404345257627094790119033, −5.69936928093273698034132200949, −5.02881182674891224030881353628, −4.03368888866943080313269806836, −2.85462437104757269863819821070, −1.81178027683286420855293208003,
1.28565600335986524025571631136, 2.22535981689085822806457046944, 3.58204123548798463417496884535, 4.08231339350892057815176433856, 5.17919975563378458208406429702, 6.71849440135263293154027840556, 7.14118935920866256141615044380, 8.283541622284576275772279112383, 9.024294578196671825575149976090, 9.847438911649833181518956312183