Properties

Label 8-990e4-1.1-c1e4-0-15
Degree $8$
Conductor $960596010000$
Sign $1$
Analytic cond. $3905.25$
Root an. cond. $2.81161$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 4·5-s − 4·11-s + 3·16-s + 8·19-s + 8·20-s + 8·25-s + 8·29-s + 16·31-s − 16·41-s + 8·44-s + 16·49-s + 16·55-s − 16·61-s − 4·64-s − 24·71-s − 16·76-s − 12·80-s − 32·95-s − 16·100-s + 40·101-s + 16·109-s − 16·116-s + 10·121-s − 32·124-s − 20·125-s + 127-s + ⋯
L(s)  = 1  − 4-s − 1.78·5-s − 1.20·11-s + 3/4·16-s + 1.83·19-s + 1.78·20-s + 8/5·25-s + 1.48·29-s + 2.87·31-s − 2.49·41-s + 1.20·44-s + 16/7·49-s + 2.15·55-s − 2.04·61-s − 1/2·64-s − 2.84·71-s − 1.83·76-s − 1.34·80-s − 3.28·95-s − 8/5·100-s + 3.98·101-s + 1.53·109-s − 1.48·116-s + 0.909·121-s − 2.87·124-s − 1.78·125-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(3905.25\)
Root analytic conductor: \(2.81161\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 11^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.453387409\)
\(L(\frac12)\) \(\approx\) \(1.453387409\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
3 \( 1 \)
5$C_2^2$ \( 1 + 4 T + 8 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
11$C_1$ \( ( 1 + T )^{4} \)
good7$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 - 8 T^{2} - 30 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
23$D_4\times C_2$ \( 1 - 72 T^{2} + 2258 T^{4} - 72 p^{2} T^{6} + p^{4} T^{8} \)
29$D_{4}$ \( ( 1 - 4 T + 38 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
31$D_{4}$ \( ( 1 - 8 T + 54 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 92 T^{2} + 4470 T^{4} - 92 p^{2} T^{6} + p^{4} T^{8} \)
41$D_{4}$ \( ( 1 + 8 T + 74 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 - 52 T^{2} + 918 T^{4} - 52 p^{2} T^{6} + p^{4} T^{8} \)
47$D_4\times C_2$ \( 1 - 168 T^{2} + 11378 T^{4} - 168 p^{2} T^{6} + p^{4} T^{8} \)
53$D_4\times C_2$ \( 1 - 32 T^{2} - 1902 T^{4} - 32 p^{2} T^{6} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 + 94 T^{2} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 + 8 T + 132 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 4 T^{2} - 4842 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 + 12 T + 172 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 172 T^{2} + 14598 T^{4} - 172 p^{2} T^{6} + p^{4} T^{8} \)
79$C_2^2$ \( ( 1 + 152 T^{2} + p^{2} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 - 108 T^{2} + 10550 T^{4} - 108 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 + 82 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 158 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.23562196563367393777080795463, −7.02296491459631259702043750637, −6.90638322986724148189153725366, −6.36410100555077408218772037522, −6.26952871328789547177652247544, −6.08101481121066859963635376203, −5.77400561077571415366522020090, −5.41131814513715435466012438036, −5.15536053256032508595861906341, −5.13982778830083795830294504738, −4.77912171548074574194042147138, −4.47838920046899879291515283068, −4.39325863062804177155071164525, −4.16695850958277873105606528628, −4.05770896716843677965322498699, −3.22441928741127283517906450665, −3.16959299272220307437937167001, −3.15724977854281539098074873724, −3.13574055295550622152301527340, −2.53857473304517875820991082219, −2.05659549537335290958329904540, −1.66996064163866236094087998387, −1.08443343204493986299223128912, −0.64059080719054639764348669905, −0.50948005776602084837527228826, 0.50948005776602084837527228826, 0.64059080719054639764348669905, 1.08443343204493986299223128912, 1.66996064163866236094087998387, 2.05659549537335290958329904540, 2.53857473304517875820991082219, 3.13574055295550622152301527340, 3.15724977854281539098074873724, 3.16959299272220307437937167001, 3.22441928741127283517906450665, 4.05770896716843677965322498699, 4.16695850958277873105606528628, 4.39325863062804177155071164525, 4.47838920046899879291515283068, 4.77912171548074574194042147138, 5.13982778830083795830294504738, 5.15536053256032508595861906341, 5.41131814513715435466012438036, 5.77400561077571415366522020090, 6.08101481121066859963635376203, 6.26952871328789547177652247544, 6.36410100555077408218772037522, 6.90638322986724148189153725366, 7.02296491459631259702043750637, 7.23562196563367393777080795463

Graph of the $Z$-function along the critical line