Properties

Label 2-990-99.70-c1-0-45
Degree $2$
Conductor $990$
Sign $-0.100 + 0.994i$
Analytic cond. $7.90518$
Root an. cond. $2.81161$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.913 − 0.406i)2-s + (1.57 − 0.726i)3-s + (0.669 − 0.743i)4-s + (0.913 + 0.406i)5-s + (1.14 − 1.30i)6-s + (−4.74 − 1.00i)7-s + (0.309 − 0.951i)8-s + (1.94 − 2.28i)9-s + 0.999·10-s + (0.272 − 3.30i)11-s + (0.512 − 1.65i)12-s + (0.108 − 1.03i)13-s + (−4.74 + 1.00i)14-s + (1.73 − 0.0239i)15-s + (−0.104 − 0.994i)16-s + (5.36 − 3.89i)17-s + ⋯
L(s)  = 1  + (0.645 − 0.287i)2-s + (0.907 − 0.419i)3-s + (0.334 − 0.371i)4-s + (0.408 + 0.181i)5-s + (0.465 − 0.531i)6-s + (−1.79 − 0.381i)7-s + (0.109 − 0.336i)8-s + (0.648 − 0.761i)9-s + 0.316·10-s + (0.0821 − 0.996i)11-s + (0.147 − 0.477i)12-s + (0.0300 − 0.285i)13-s + (−1.26 + 0.269i)14-s + (0.447 − 0.00619i)15-s + (−0.0261 − 0.248i)16-s + (1.30 − 0.944i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.100 + 0.994i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.100 + 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(990\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $-0.100 + 0.994i$
Analytic conductor: \(7.90518\)
Root analytic conductor: \(2.81161\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{990} (961, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 990,\ (\ :1/2),\ -0.100 + 0.994i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.89610 - 2.09712i\)
\(L(\frac12)\) \(\approx\) \(1.89610 - 2.09712i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.913 + 0.406i)T \)
3 \( 1 + (-1.57 + 0.726i)T \)
5 \( 1 + (-0.913 - 0.406i)T \)
11 \( 1 + (-0.272 + 3.30i)T \)
good7 \( 1 + (4.74 + 1.00i)T + (6.39 + 2.84i)T^{2} \)
13 \( 1 + (-0.108 + 1.03i)T + (-12.7 - 2.70i)T^{2} \)
17 \( 1 + (-5.36 + 3.89i)T + (5.25 - 16.1i)T^{2} \)
19 \( 1 + (1.19 - 3.67i)T + (-15.3 - 11.1i)T^{2} \)
23 \( 1 + (-1.73 - 3.00i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (6.60 + 1.40i)T + (26.4 + 11.7i)T^{2} \)
31 \( 1 + (-0.789 + 7.50i)T + (-30.3 - 6.44i)T^{2} \)
37 \( 1 + (-1.14 - 3.51i)T + (-29.9 + 21.7i)T^{2} \)
41 \( 1 + (-10.9 + 2.32i)T + (37.4 - 16.6i)T^{2} \)
43 \( 1 + (4.30 - 7.45i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-2.86 - 3.18i)T + (-4.91 + 46.7i)T^{2} \)
53 \( 1 + (-0.579 - 0.420i)T + (16.3 + 50.4i)T^{2} \)
59 \( 1 + (8.19 - 9.09i)T + (-6.16 - 58.6i)T^{2} \)
61 \( 1 + (0.348 + 3.32i)T + (-59.6 + 12.6i)T^{2} \)
67 \( 1 + (-2.20 - 3.81i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (0.537 - 0.390i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (-2.15 - 6.64i)T + (-59.0 + 42.9i)T^{2} \)
79 \( 1 + (2.67 - 1.19i)T + (52.8 - 58.7i)T^{2} \)
83 \( 1 + (-0.785 - 7.47i)T + (-81.1 + 17.2i)T^{2} \)
89 \( 1 - 9.51T + 89T^{2} \)
97 \( 1 + (-6.30 + 2.80i)T + (64.9 - 72.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.578652853370363100130886363394, −9.367455742327465413900530786611, −7.902874710530515174975304283675, −7.22050841379402982198163263822, −6.16547448216572019732392316218, −5.75970988829280702374720724695, −3.96599912526925769856246616288, −3.27607922618149429968344915011, −2.65643118636754747396458862144, −0.969285488778915751873873452520, 2.05876934937745311983403111415, 3.08947235554075746818040566353, 3.82548066413822653006304426316, 4.90575053771905743129535439177, 5.92530521303647969889643793906, 6.80139349903870954354780045604, 7.52610147566543837370750537911, 8.775107506121594745518270428252, 9.318494461842268060702159380699, 10.03844413524460670336542796851

Graph of the $Z$-function along the critical line