Properties

Label 2-990-99.31-c1-0-16
Degree $2$
Conductor $990$
Sign $0.981 - 0.191i$
Analytic cond. $7.90518$
Root an. cond. $2.81161$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.978 + 0.207i)2-s + (−0.556 + 1.64i)3-s + (0.913 − 0.406i)4-s + (−0.978 − 0.207i)5-s + (0.203 − 1.72i)6-s + (−0.187 + 1.78i)7-s + (−0.809 + 0.587i)8-s + (−2.38 − 1.82i)9-s + 1.00·10-s + (0.353 − 3.29i)11-s + (0.158 + 1.72i)12-s + (−0.773 − 0.858i)13-s + (−0.187 − 1.78i)14-s + (0.885 − 1.48i)15-s + (0.669 − 0.743i)16-s + (−0.205 − 0.632i)17-s + ⋯
L(s)  = 1  + (−0.691 + 0.147i)2-s + (−0.321 + 0.946i)3-s + (0.456 − 0.203i)4-s + (−0.437 − 0.0929i)5-s + (0.0830 − 0.702i)6-s + (−0.0707 + 0.672i)7-s + (−0.286 + 0.207i)8-s + (−0.793 − 0.608i)9-s + 0.316·10-s + (0.106 − 0.994i)11-s + (0.0458 + 0.497i)12-s + (−0.214 − 0.238i)13-s + (−0.0500 − 0.475i)14-s + (0.228 − 0.384i)15-s + (0.167 − 0.185i)16-s + (−0.0498 − 0.153i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 - 0.191i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.981 - 0.191i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(990\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $0.981 - 0.191i$
Analytic conductor: \(7.90518\)
Root analytic conductor: \(2.81161\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{990} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 990,\ (\ :1/2),\ 0.981 - 0.191i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.807799 + 0.0778754i\)
\(L(\frac12)\) \(\approx\) \(0.807799 + 0.0778754i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.978 - 0.207i)T \)
3 \( 1 + (0.556 - 1.64i)T \)
5 \( 1 + (0.978 + 0.207i)T \)
11 \( 1 + (-0.353 + 3.29i)T \)
good7 \( 1 + (0.187 - 1.78i)T + (-6.84 - 1.45i)T^{2} \)
13 \( 1 + (0.773 + 0.858i)T + (-1.35 + 12.9i)T^{2} \)
17 \( 1 + (0.205 + 0.632i)T + (-13.7 + 9.99i)T^{2} \)
19 \( 1 + (-6.00 + 4.36i)T + (5.87 - 18.0i)T^{2} \)
23 \( 1 + (-0.235 + 0.408i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (0.468 - 4.45i)T + (-28.3 - 6.02i)T^{2} \)
31 \( 1 + (1.37 + 1.52i)T + (-3.24 + 30.8i)T^{2} \)
37 \( 1 + (-6.06 - 4.40i)T + (11.4 + 35.1i)T^{2} \)
41 \( 1 + (1.01 + 9.62i)T + (-40.1 + 8.52i)T^{2} \)
43 \( 1 + (-1.58 - 2.74i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (6.03 + 2.68i)T + (31.4 + 34.9i)T^{2} \)
53 \( 1 + (-2.19 + 6.76i)T + (-42.8 - 31.1i)T^{2} \)
59 \( 1 + (-4.12 + 1.83i)T + (39.4 - 43.8i)T^{2} \)
61 \( 1 + (3.18 - 3.54i)T + (-6.37 - 60.6i)T^{2} \)
67 \( 1 + (2.69 - 4.66i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (-0.791 - 2.43i)T + (-57.4 + 41.7i)T^{2} \)
73 \( 1 + (-9.59 - 6.97i)T + (22.5 + 69.4i)T^{2} \)
79 \( 1 + (-1.25 + 0.266i)T + (72.1 - 32.1i)T^{2} \)
83 \( 1 + (-5.84 + 6.49i)T + (-8.67 - 82.5i)T^{2} \)
89 \( 1 - 10.3T + 89T^{2} \)
97 \( 1 + (-14.1 + 3.00i)T + (88.6 - 39.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.906151995485852544989503194664, −9.099644246297309136519296099131, −8.669597010089331703797713676682, −7.65759129803895808221934824117, −6.60974642103747154912992012105, −5.60448140895666753474517247105, −4.99082865070917485169272274607, −3.59667444081337075979158174952, −2.73748540020193367300483825439, −0.64394377523125295831752166398, 0.983031986654238089639581375833, 2.13491792896605732030810844464, 3.46045648782472202539367909993, 4.69923245512401444342929670535, 5.96051471086911604657835877013, 6.84713901465061973786296271265, 7.66337795042540566786316828793, 7.86710332747505639937790676654, 9.204090845781752868897801259692, 9.955686600232341763792470536390

Graph of the $Z$-function along the critical line