Properties

Label 2-990-99.4-c1-0-8
Degree $2$
Conductor $990$
Sign $-0.968 + 0.250i$
Analytic cond. $7.90518$
Root an. cond. $2.81161$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.104 + 0.994i)2-s + (−0.0126 + 1.73i)3-s + (−0.978 − 0.207i)4-s + (−0.104 − 0.994i)5-s + (−1.72 − 0.193i)6-s + (2.08 − 2.31i)7-s + (0.309 − 0.951i)8-s + (−2.99 − 0.0437i)9-s + 0.999·10-s + (0.912 + 3.18i)11-s + (0.372 − 1.69i)12-s + (−4.07 + 1.81i)13-s + (2.08 + 2.31i)14-s + (1.72 − 0.168i)15-s + (0.913 + 0.406i)16-s + (−3.50 + 2.54i)17-s + ⋯
L(s)  = 1  + (−0.0739 + 0.703i)2-s + (−0.00729 + 0.999i)3-s + (−0.489 − 0.103i)4-s + (−0.0467 − 0.444i)5-s + (−0.702 − 0.0790i)6-s + (0.786 − 0.873i)7-s + (0.109 − 0.336i)8-s + (−0.999 − 0.0145i)9-s + 0.316·10-s + (0.275 + 0.961i)11-s + (0.107 − 0.488i)12-s + (−1.13 + 0.503i)13-s + (0.556 + 0.617i)14-s + (0.445 − 0.0435i)15-s + (0.228 + 0.101i)16-s + (−0.849 + 0.616i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.968 + 0.250i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 990 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.968 + 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(990\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 11\)
Sign: $-0.968 + 0.250i$
Analytic conductor: \(7.90518\)
Root analytic conductor: \(2.81161\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{990} (301, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 990,\ (\ :1/2),\ -0.968 + 0.250i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.101095 - 0.795162i\)
\(L(\frac12)\) \(\approx\) \(0.101095 - 0.795162i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.104 - 0.994i)T \)
3 \( 1 + (0.0126 - 1.73i)T \)
5 \( 1 + (0.104 + 0.994i)T \)
11 \( 1 + (-0.912 - 3.18i)T \)
good7 \( 1 + (-2.08 + 2.31i)T + (-0.731 - 6.96i)T^{2} \)
13 \( 1 + (4.07 - 1.81i)T + (8.69 - 9.66i)T^{2} \)
17 \( 1 + (3.50 - 2.54i)T + (5.25 - 16.1i)T^{2} \)
19 \( 1 + (-0.484 + 1.48i)T + (-15.3 - 11.1i)T^{2} \)
23 \( 1 + (2.36 - 4.09i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (4.35 - 4.84i)T + (-3.03 - 28.8i)T^{2} \)
31 \( 1 + (9.63 - 4.29i)T + (20.7 - 23.0i)T^{2} \)
37 \( 1 + (-1.85 - 5.72i)T + (-29.9 + 21.7i)T^{2} \)
41 \( 1 + (-3.09 - 3.43i)T + (-4.28 + 40.7i)T^{2} \)
43 \( 1 + (-3.01 - 5.22i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-5.49 + 1.16i)T + (42.9 - 19.1i)T^{2} \)
53 \( 1 + (-5.80 - 4.21i)T + (16.3 + 50.4i)T^{2} \)
59 \( 1 + (10.4 + 2.21i)T + (53.8 + 23.9i)T^{2} \)
61 \( 1 + (8.57 + 3.81i)T + (40.8 + 45.3i)T^{2} \)
67 \( 1 + (-1.11 + 1.92i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (-4.31 + 3.13i)T + (21.9 - 67.5i)T^{2} \)
73 \( 1 + (4.11 + 12.6i)T + (-59.0 + 42.9i)T^{2} \)
79 \( 1 + (-1.55 + 14.8i)T + (-77.2 - 16.4i)T^{2} \)
83 \( 1 + (-7.12 - 3.17i)T + (55.5 + 61.6i)T^{2} \)
89 \( 1 - 8.41T + 89T^{2} \)
97 \( 1 + (-1.06 + 10.1i)T + (-94.8 - 20.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.35243320022412640350229029191, −9.284117865213017605594290375892, −9.092688044128605001164529315582, −7.75279028281528464838292927019, −7.31844197674250898403525722363, −6.10809100905532902403541662459, −4.82102787669334942982886900687, −4.67702773905546659911322800094, −3.65828600967457736253387549715, −1.79696325130348336899798598707, 0.36039748307218675990695263481, 2.12405020635769311250001851927, 2.57179576705324686670033407847, 3.96084421705365175160331792397, 5.38071600788164779902664861601, 5.92855165665404855192987852487, 7.23253456402423841066570675760, 7.86918695961219305433767796156, 8.768037689665532924914196515445, 9.374369435093546877136096880271

Graph of the $Z$-function along the critical line