Properties

Label 2-984-41.40-c1-0-12
Degree $2$
Conductor $984$
Sign $0.624 + 0.780i$
Analytic cond. $7.85727$
Root an. cond. $2.80308$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s − 2·5-s + 2i·7-s − 9-s − 4i·11-s − 6i·13-s − 2i·15-s − 2·21-s − 25-s i·27-s − 2i·29-s + 8·31-s + 4·33-s − 4i·35-s + 10·37-s + ⋯
L(s)  = 1  + 0.577i·3-s − 0.894·5-s + 0.755i·7-s − 0.333·9-s − 1.20i·11-s − 1.66i·13-s − 0.516i·15-s − 0.436·21-s − 0.200·25-s − 0.192i·27-s − 0.371i·29-s + 1.43·31-s + 0.696·33-s − 0.676i·35-s + 1.64·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.624 + 0.780i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 984 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.624 + 0.780i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(984\)    =    \(2^{3} \cdot 3 \cdot 41\)
Sign: $0.624 + 0.780i$
Analytic conductor: \(7.85727\)
Root analytic conductor: \(2.80308\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{984} (409, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 984,\ (\ :1/2),\ 0.624 + 0.780i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.925985 - 0.445051i\)
\(L(\frac12)\) \(\approx\) \(0.925985 - 0.445051i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
41 \( 1 + (5 - 4i)T \)
good5 \( 1 + 2T + 5T^{2} \)
7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 + 4iT - 11T^{2} \)
13 \( 1 + 6iT - 13T^{2} \)
17 \( 1 - 17T^{2} \)
19 \( 1 - 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 + 2iT - 29T^{2} \)
31 \( 1 - 8T + 31T^{2} \)
37 \( 1 - 10T + 37T^{2} \)
43 \( 1 - 8T + 43T^{2} \)
47 \( 1 + 10iT - 47T^{2} \)
53 \( 1 + 6iT - 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 + 10T + 61T^{2} \)
67 \( 1 + 8iT - 67T^{2} \)
71 \( 1 + 14iT - 71T^{2} \)
73 \( 1 + 14T + 73T^{2} \)
79 \( 1 + 6iT - 79T^{2} \)
83 \( 1 + 16T + 83T^{2} \)
89 \( 1 + 4iT - 89T^{2} \)
97 \( 1 - 12iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.973555473449045061689183005016, −8.912146789985222110613868421730, −8.211667857697359480242970875774, −7.70967088256427422503576667165, −6.18922722803950013603389748862, −5.59678728789606218694066264948, −4.54701466385807946061990401767, −3.44917782704188721746079885074, −2.75134261588590405774336849301, −0.52386765181596440161221694902, 1.30042500314380878635626878308, 2.61257360800506047324889181381, 4.22454791601923624547465509936, 4.39583393213549346749205940281, 6.03205645092757644053203528644, 7.08136493563765117926286496732, 7.34514788027834800483476918576, 8.299826622472109557705126003640, 9.279316026144734963263739618604, 10.07273894811391958392402133191

Graph of the $Z$-function along the critical line