Properties

Label 4-980e2-1.1-c2e2-0-0
Degree $4$
Conductor $960400$
Sign $1$
Analytic cond. $713.053$
Root an. cond. $5.16750$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 6·5-s + 2·9-s + 20·11-s − 18·13-s − 12·15-s − 2·17-s − 46·23-s + 11·25-s − 18·27-s + 28·31-s − 40·33-s + 66·37-s + 36·39-s + 28·41-s − 30·43-s + 12·45-s + 78·47-s + 4·51-s − 14·53-s + 120·55-s − 84·61-s − 108·65-s − 14·67-s + 92·69-s + 196·71-s − 98·73-s + ⋯
L(s)  = 1  − 2/3·3-s + 6/5·5-s + 2/9·9-s + 1.81·11-s − 1.38·13-s − 4/5·15-s − 0.117·17-s − 2·23-s + 0.439·25-s − 2/3·27-s + 0.903·31-s − 1.21·33-s + 1.78·37-s + 0.923·39-s + 0.682·41-s − 0.697·43-s + 4/15·45-s + 1.65·47-s + 4/51·51-s − 0.264·53-s + 2.18·55-s − 1.37·61-s − 1.66·65-s − 0.208·67-s + 4/3·69-s + 2.76·71-s − 1.34·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 960400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 960400 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(960400\)    =    \(2^{4} \cdot 5^{2} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(713.053\)
Root analytic conductor: \(5.16750\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 960400,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.331747893\)
\(L(\frac12)\) \(\approx\) \(2.331747893\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 - 6 T + p^{2} T^{2} \)
7 \( 1 \)
good3$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p^{2} T^{3} + p^{4} T^{4} \)
11$C_2$ \( ( 1 - 10 T + p^{2} T^{2} )^{2} \)
13$C_2^2$ \( 1 + 18 T + 162 T^{2} + 18 p^{2} T^{3} + p^{4} T^{4} \)
17$C_2^2$ \( 1 + 2 T + 2 T^{2} + 2 p^{2} T^{3} + p^{4} T^{4} \)
19$C_2^2$ \( 1 - 658 T^{2} + p^{4} T^{4} \)
23$C_1$$\times$$C_2$ \( ( 1 + p T )^{2}( 1 + p^{2} T^{2} ) \)
29$C_2^2$ \( 1 - 1618 T^{2} + p^{4} T^{4} \)
31$C_2$ \( ( 1 - 14 T + p^{2} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 66 T + 2178 T^{2} - 66 p^{2} T^{3} + p^{4} T^{4} \)
41$C_2$ \( ( 1 - 14 T + p^{2} T^{2} )^{2} \)
43$C_2^2$ \( 1 + 30 T + 450 T^{2} + 30 p^{2} T^{3} + p^{4} T^{4} \)
47$C_2^2$ \( 1 - 78 T + 3042 T^{2} - 78 p^{2} T^{3} + p^{4} T^{4} \)
53$C_2^2$ \( 1 + 14 T + 98 T^{2} + 14 p^{2} T^{3} + p^{4} T^{4} \)
59$C_2^2$ \( 1 - 3826 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 + 42 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 14 T + 98 T^{2} + 14 p^{2} T^{3} + p^{4} T^{4} \)
71$C_2$ \( ( 1 - 98 T + p^{2} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 98 T + 4802 T^{2} + 98 p^{2} T^{3} + p^{4} T^{4} \)
79$C_2^2$ \( 1 - 3266 T^{2} + p^{4} T^{4} \)
83$C_2^2$ \( 1 - 126 T + 7938 T^{2} - 126 p^{2} T^{3} + p^{4} T^{4} \)
89$C_2^2$ \( 1 - 3298 T^{2} + p^{4} T^{4} \)
97$C_2^2$ \( 1 + 66 T + 2178 T^{2} + 66 p^{2} T^{3} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.719733207515548781191916935640, −9.661532658382712577044888648366, −9.498713833805024439100402946554, −8.946642129150528838252438482899, −8.373957045225957256814300372951, −7.76572449348316978503248767732, −7.58731533477582450614894501190, −6.85530750251019680047430955732, −6.38892949242716072323059818293, −6.31496761817438579474310051508, −5.65500994595167842242624495942, −5.51631636013647044561779495542, −4.70970160915753985318585709589, −4.19957913645217588710882929415, −4.05925660394284288060450122528, −3.11354035306616046368054592248, −2.37237448144610065043351343918, −2.00581744023120878846970350891, −1.32124950372146113583617411629, −0.52229640382573448402016971258, 0.52229640382573448402016971258, 1.32124950372146113583617411629, 2.00581744023120878846970350891, 2.37237448144610065043351343918, 3.11354035306616046368054592248, 4.05925660394284288060450122528, 4.19957913645217588710882929415, 4.70970160915753985318585709589, 5.51631636013647044561779495542, 5.65500994595167842242624495942, 6.31496761817438579474310051508, 6.38892949242716072323059818293, 6.85530750251019680047430955732, 7.58731533477582450614894501190, 7.76572449348316978503248767732, 8.373957045225957256814300372951, 8.946642129150528838252438482899, 9.498713833805024439100402946554, 9.661532658382712577044888648366, 9.719733207515548781191916935640

Graph of the $Z$-function along the critical line