| L(s) = 1 | + (1.18 + 0.764i)2-s + (2.38 − 0.638i)3-s + (0.831 + 1.81i)4-s + (0.525 − 2.17i)5-s + (3.32 + 1.06i)6-s + (−0.401 + 2.79i)8-s + (2.68 − 1.54i)9-s + (2.28 − 2.18i)10-s + (4.09 + 2.36i)11-s + (3.14 + 3.80i)12-s + (−0.0592 + 0.0592i)13-s + (−0.135 − 5.51i)15-s + (−2.61 + 3.02i)16-s + (−4.77 + 1.27i)17-s + (4.37 + 0.207i)18-s + (−1.31 − 2.27i)19-s + ⋯ |
| L(s) = 1 | + (0.841 + 0.540i)2-s + (1.37 − 0.368i)3-s + (0.415 + 0.909i)4-s + (0.235 − 0.971i)5-s + (1.35 + 0.433i)6-s + (−0.142 + 0.989i)8-s + (0.893 − 0.515i)9-s + (0.723 − 0.690i)10-s + (1.23 + 0.713i)11-s + (0.907 + 1.09i)12-s + (−0.0164 + 0.0164i)13-s + (−0.0349 − 1.42i)15-s + (−0.654 + 0.755i)16-s + (−1.15 + 0.310i)17-s + (1.03 + 0.0490i)18-s + (−0.301 − 0.522i)19-s + ⋯ |
Λ(s)=(=(980s/2ΓC(s)L(s)(0.940−0.341i)Λ(2−s)
Λ(s)=(=(980s/2ΓC(s+1/2)L(s)(0.940−0.341i)Λ(1−s)
| Degree: |
2 |
| Conductor: |
980
= 22⋅5⋅72
|
| Sign: |
0.940−0.341i
|
| Analytic conductor: |
7.82533 |
| Root analytic conductor: |
2.79738 |
| Motivic weight: |
1 |
| Rational: |
no |
| Arithmetic: |
yes |
| Character: |
χ980(67,⋅)
|
| Primitive: |
yes
|
| Self-dual: |
no
|
| Analytic rank: |
0
|
| Selberg data: |
(2, 980, ( :1/2), 0.940−0.341i)
|
Particular Values
| L(1) |
≈ |
4.12998+0.725974i |
| L(21) |
≈ |
4.12998+0.725974i |
| L(23) |
|
not available |
| L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
|---|
| bad | 2 | 1+(−1.18−0.764i)T |
| 5 | 1+(−0.525+2.17i)T |
| 7 | 1 |
| good | 3 | 1+(−2.38+0.638i)T+(2.59−1.5i)T2 |
| 11 | 1+(−4.09−2.36i)T+(5.5+9.52i)T2 |
| 13 | 1+(0.0592−0.0592i)T−13iT2 |
| 17 | 1+(4.77−1.27i)T+(14.7−8.5i)T2 |
| 19 | 1+(1.31+2.27i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−0.292+1.09i)T+(−19.9−11.5i)T2 |
| 29 | 1+7.27iT−29T2 |
| 31 | 1+(4.01+2.31i)T+(15.5+26.8i)T2 |
| 37 | 1+(0.596−2.22i)T+(−32.0−18.5i)T2 |
| 41 | 1−5.71T+41T2 |
| 43 | 1+(−1.57−1.57i)T+43iT2 |
| 47 | 1+(−2.67−0.716i)T+(40.7+23.5i)T2 |
| 53 | 1+(−2.44−9.12i)T+(−45.8+26.5i)T2 |
| 59 | 1+(1.67−2.90i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−0.978−1.69i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−0.131−0.491i)T+(−58.0+33.5i)T2 |
| 71 | 1+14.4iT−71T2 |
| 73 | 1+(−2.48−9.26i)T+(−63.2+36.5i)T2 |
| 79 | 1+(3.05+5.28i)T+(−39.5+68.4i)T2 |
| 83 | 1+(5.62+5.62i)T+83iT2 |
| 89 | 1+(14.4−8.34i)T+(44.5−77.0i)T2 |
| 97 | 1+(5.81+5.81i)T+97iT2 |
| show more | |
| show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.518810159492641868291988055985, −9.016741958367439783287105333773, −8.366871266019776456130481734969, −7.53710511187554216348102906957, −6.71730848133527081854950392344, −5.80323644252566141412174236896, −4.38381417401974506317252798302, −4.10622933435354400686546640929, −2.63066145608185318987548801893, −1.77619043994412504878204182777,
1.77541353535031493278708692314, 2.74613947310342081047527848496, 3.57119413057612448528207724976, 4.13054311662669088717838080289, 5.55807062298236073060091378663, 6.57078454034709302488437154918, 7.21967007394398239982789581530, 8.581463214593794337122973925000, 9.230521678657086372665068385504, 9.934853955076152138727961486555