| L(s) = 1 | + (−0.121 + 1.40i)2-s + (0.404 + 0.404i)3-s + (−1.97 − 0.341i)4-s + (2.23 + 0.0378i)5-s + (−0.618 + 0.520i)6-s + (0.719 − 2.73i)8-s − 2.67i·9-s + (−0.323 + 3.14i)10-s + 3.96i·11-s + (−0.658 − 0.934i)12-s + (−2.04 + 2.04i)13-s + (0.888 + 0.918i)15-s + (3.76 + 1.34i)16-s + (0.424 + 0.424i)17-s + (3.76 + 0.323i)18-s + 2.00·19-s + ⋯ |
| L(s) = 1 | + (−0.0855 + 0.996i)2-s + (0.233 + 0.233i)3-s + (−0.985 − 0.170i)4-s + (0.999 + 0.0169i)5-s + (−0.252 + 0.212i)6-s + (0.254 − 0.967i)8-s − 0.891i·9-s + (−0.102 + 0.994i)10-s + 1.19i·11-s + (−0.190 − 0.269i)12-s + (−0.568 + 0.568i)13-s + (0.229 + 0.237i)15-s + (0.941 + 0.336i)16-s + (0.103 + 0.103i)17-s + (0.887 + 0.0762i)18-s + 0.460·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.357 - 0.934i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.357 - 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.978420 + 1.42174i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.978420 + 1.42174i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.121 - 1.40i)T \) |
| 5 | \( 1 + (-2.23 - 0.0378i)T \) |
| 7 | \( 1 \) |
| good | 3 | \( 1 + (-0.404 - 0.404i)T + 3iT^{2} \) |
| 11 | \( 1 - 3.96iT - 11T^{2} \) |
| 13 | \( 1 + (2.04 - 2.04i)T - 13iT^{2} \) |
| 17 | \( 1 + (-0.424 - 0.424i)T + 17iT^{2} \) |
| 19 | \( 1 - 2.00T + 19T^{2} \) |
| 23 | \( 1 + (-1.75 - 1.75i)T + 23iT^{2} \) |
| 29 | \( 1 - 7.25iT - 29T^{2} \) |
| 31 | \( 1 - 3.26iT - 31T^{2} \) |
| 37 | \( 1 + (-6.80 - 6.80i)T + 37iT^{2} \) |
| 41 | \( 1 - 3.35T + 41T^{2} \) |
| 43 | \( 1 + (-3.31 - 3.31i)T + 43iT^{2} \) |
| 47 | \( 1 + (-8.86 + 8.86i)T - 47iT^{2} \) |
| 53 | \( 1 + (2.12 - 2.12i)T - 53iT^{2} \) |
| 59 | \( 1 + 14.8T + 59T^{2} \) |
| 61 | \( 1 + 4.23T + 61T^{2} \) |
| 67 | \( 1 + (2.68 - 2.68i)T - 67iT^{2} \) |
| 71 | \( 1 + 4.86iT - 71T^{2} \) |
| 73 | \( 1 + (-6.91 + 6.91i)T - 73iT^{2} \) |
| 79 | \( 1 - 6.91T + 79T^{2} \) |
| 83 | \( 1 + (5.46 + 5.46i)T + 83iT^{2} \) |
| 89 | \( 1 + 3.87iT - 89T^{2} \) |
| 97 | \( 1 + (1.11 + 1.11i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.801476631417685299258892315605, −9.403965000194317568114934045994, −8.802454134473266135215421437807, −7.52939910908588438254849577882, −6.86661291899947854219791584025, −6.11551915294422656938463509695, −5.09593865106545928255610225948, −4.37011100787168471523106196981, −3.03582029637693706604492141609, −1.43129120536541398692883765858,
0.906087886446534751278127850033, 2.33452959330129582034022622439, 2.88691688700947802100905880844, 4.31265421969486420034013013092, 5.38605206518459408366700457188, 5.99380709926250910020888558389, 7.56280679286536878232615099886, 8.180125412511852686617640455866, 9.204008047627337615976129882244, 9.700365078450885074973835478335