| L(s) = 1 | + (0.940 − 1.05i)2-s − 2.59i·3-s + (−0.232 − 1.98i)4-s + (−1.75 + 1.38i)5-s + (−2.74 − 2.44i)6-s + (−2.31 − 1.62i)8-s − 3.74·9-s + (−0.194 + 3.15i)10-s + 3.60i·11-s + (−5.15 + 0.603i)12-s − 0.818·13-s + (3.58 + 4.56i)15-s + (−3.89 + 0.924i)16-s − 7.39·17-s + (−3.51 + 3.95i)18-s − 3.30·19-s + ⋯ |
| L(s) = 1 | + (0.664 − 0.747i)2-s − 1.49i·3-s + (−0.116 − 0.993i)4-s + (−0.786 + 0.617i)5-s + (−1.11 − 0.996i)6-s + (−0.819 − 0.573i)8-s − 1.24·9-s + (−0.0614 + 0.998i)10-s + 1.08i·11-s + (−1.48 + 0.174i)12-s − 0.226·13-s + (0.925 + 1.17i)15-s + (−0.972 + 0.231i)16-s − 1.79·17-s + (−0.828 + 0.931i)18-s − 0.758·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0684 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 980 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0684 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.388938 + 0.416528i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.388938 + 0.416528i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.940 + 1.05i)T \) |
| 5 | \( 1 + (1.75 - 1.38i)T \) |
| 7 | \( 1 \) |
| good | 3 | \( 1 + 2.59iT - 3T^{2} \) |
| 11 | \( 1 - 3.60iT - 11T^{2} \) |
| 13 | \( 1 + 0.818T + 13T^{2} \) |
| 17 | \( 1 + 7.39T + 17T^{2} \) |
| 19 | \( 1 + 3.30T + 19T^{2} \) |
| 23 | \( 1 - 2.53T + 23T^{2} \) |
| 29 | \( 1 + 2.04T + 29T^{2} \) |
| 31 | \( 1 + 1.91T + 31T^{2} \) |
| 37 | \( 1 + 7.16iT - 37T^{2} \) |
| 41 | \( 1 + 2.65iT - 41T^{2} \) |
| 43 | \( 1 - 2.39T + 43T^{2} \) |
| 47 | \( 1 + 1.33iT - 47T^{2} \) |
| 53 | \( 1 + 1.81iT - 53T^{2} \) |
| 59 | \( 1 - 1.91T + 59T^{2} \) |
| 61 | \( 1 + 9.77iT - 61T^{2} \) |
| 67 | \( 1 + 9.26T + 67T^{2} \) |
| 71 | \( 1 + 1.38iT - 71T^{2} \) |
| 73 | \( 1 - 7.39T + 73T^{2} \) |
| 79 | \( 1 + 7.74iT - 79T^{2} \) |
| 83 | \( 1 - 10.4iT - 83T^{2} \) |
| 89 | \( 1 + 10.6iT - 89T^{2} \) |
| 97 | \( 1 + 7.32T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.429430847327902889651908521460, −8.490243472318655890661201955025, −7.33371121426567370430470544818, −6.89335486156794822282815739529, −6.14536331124768220978196752328, −4.78164508475608513156808860034, −3.90106611331886660262283321260, −2.51786533764339327249399048900, −1.92517674155215464425119981274, −0.19654781798963981760979075969,
2.88940319915657217132470425466, 3.88932547564334969192683754342, 4.46247794479093884368326846196, 5.14968490367492352321773209142, 6.14198568706263841219595645649, 7.18840736317900018574883178383, 8.422422905491850217789435861284, 8.725789349399843791222073026515, 9.516532104809894487460537002452, 10.92719960225056481515893899552